

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Sampsa Sarjanoja

BM3D IMAGE DENOISING USING HETEROGENEOUS

COMPUTING PLATFORMS

Master’s Thesis

Degree Programme in Computer Science and Engineering

March 2015

Sarjanoja S. (2015) BM3D image denoising using heterogeneous computing

platforms. University of Oulu, Department of Computer Science and Engineering.

Master’s Thesis, 49 p.

ABSTRACT

Noise reduction is one of the most fundamental digital image processing

problems, and is often designed to be solved at an early stage of the image

processing path. Noise appears on the images in many different ways, and it is

inevitable. In general, various image processing algorithms perform better if

their input is as error-free as possible. In order to keep the processing delays

small in different computing platforms, it is important that the noise reduction is

performed swiftly.

The recent progress in the entertainment industry has led to major

improvements in the computing capabilities of graphics cards. Today, graphics

circuits consist of several hundreds or even thousands of computing units. Using

these computing units for general-purpose computation is possible with OpenCL

and CUDA programming interfaces. In applications where the processed data is

relatively independent, using parallel computing units may increase the

performance significantly. Graphics chips enabled with general-purpose

computation capabilities are becoming more common also in mobile devices. In

addition, photography has never been as popular as it is nowadays by using

mobile devices.

This thesis aims to implement the calculation of the state-of-the-art technology

used in noise reduction, block-matching and three-dimensional filtering (BM3D),

to be executed in heterogeneous computing environments. This study evaluates

the performance of the presented implementations by making comparisons with

existing implementations. The presented implementations achieve significant

benefits from the use of parallel computing devices. At the same time the

comparisons illustrate general problems in the utilization of using massively

parallel processing for the calculation of complex imaging algorithms.

Keywords: image restoration, GPU computing, Wiener filtering

Sarjanoja S. (2015) BM3D kohinanpoistoalgoritmi heterogeenisiä laskenta-

alustoja käyttäen. Oulun yliopisto, tietotekniikan osasto. Diplomityö, 49 s.

TIIVISTELMÄ

Kohinanpoisto on yksi keskeisimmistä digitaaliseen kuvankäsittelyyn liittyvistä

ongelmista, joka useimmiten pyritään ratkaisemaan jo signaalinkäsittelyvuon

varhaisessa vaiheessa. Kohinaa ilmestyy kuviin monella eri tavalla ja sen

esiintyminen on väistämätöntä. Useat kuvankäsittelyalgoritmit toimivat

paremmin, jos niiden syöte on valmiiksi mahdollisimman virheetöntä

käsiteltäväksi. Jotta kuvankäsittelyviiveet pysyisivät pieninä eri laskenta-

alustoilla, on tärkeää että myös kohinanpoisto suoritetaan nopeasti.

Viihdeteollisuuden kehityksen myötä näytönohjaimien laskentateho on

moninkertaistunut. Nykyisin näytönohjainpiirit koostuvat useista sadoista tai

jopa tuhansista laskentayksiköistä. Näiden laskentayksiköiden käyttäminen

yleiskäyttöiseen laskentaan on mahdollista OpenCL- ja CUDA-

ohjelmointirajapinnoilla. Rinnakkaislaskenta usealla laskentayksiköllä

mahdollistaa suuria suorituskyvyn parannuksia käyttökohteissa, joissa

käsiteltävä tieto on toisistaan riippumatonta tai löyhästi riippuvaista.

Näytönohjainpiirien käyttö yleisessä laskennassa on yleistymässä myös

mobiililaitteissa. Lisäksi valokuvaaminen on nykypäivänä suosituinta juuri

mobiililaitteilla.

Tämä diplomityö pyrkii selvittämään viimeisimmän kohinanpoistoon

käytettävän tekniikan, lohkonsovitus ja kolmiulotteinen suodatus (block-

matching and three-dimensional filtering, BM3D), laskennan toteuttamista

heterogeenisissä laskentaympäristöissä. Työssä arvioidaan esiteltyjen toteutusten

suorituskykyä tekemällä vertailuja jo olemassa oleviin toteutuksiin. Esitellyt

toteutukset saavuttavat merkittäviä hyötyjä rinnakkaislaskennan käyttämisestä.

Samalla vertailuissa havainnollistetaan yleisiä ongelmakohtia

näytönohjainlaskennan hyödyntämisessä monimutkaisten

kuvankäsittelyalgoritmien laskentaan.

Avainsanat: kuvanparannus, näytönohjainlaskenta, Wiener-suodatus

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION .. 8
2. HETEROGENEOUS COMPUTING WITH OPENCL AND CUDA 10

2.1. Background and motivation ... 10
2.2. GPGPU computing ... 11

2.2.1. GPU memory types ... 11
2.2.2. Accessing GPU memories ... 13

2.2.3. Occupancy ... 14
2.2.4. Branch divergences ... 15

2.3. OpenCL standard .. 15
2.4. CUDA ... 16

3. DENOISING ALGORITHMS ... 18
3.1. Spatial-domain filtering .. 18

3.1.1. Total variation ... 19

3.1.2. Neighborhood filters ... 19
3.1.3. Non-local means .. 20

3.2. Transform-domain filtering .. 20
3.2.1. Wiener filter .. 21
3.2.2. BLS-GSM .. 22

3.3. K-SVD .. 22
3.4. BM3D algorithm .. 23

3.4.1. Structure .. 23
3.4.2. Block-matching ... 24

3.4.3. Collaborative filtering ... 25
3.4.4. Aggregation ... 27

3.4.5. Wiener filtering ... 27
3.5. Summary .. 28

4. BM3D FILTER IMPLEMENTATION.. 30

4.1. Reference implementations .. 30
4.2. OpenCL implementation .. 30

4.2.1. Parallelization .. 32
4.2.2. CUDA implementations .. 34
4.2.3. Problems occurred ... 35

5. RESULTS ... 36

5.1. Test environment .. 37
5.2. Test case 1: 256 × 256 image with simulated noise 37
5.3. Test case 2: FHD image with simulated noise 38

5.4. Test case 3: UHD image with simulated noise....................................... 39
5.5. Test case 4: Real image with natural noise .. 40
5.6. Overall performance ... 41
5.7. Comparison to reference implementations ... 42

6. DISCUSSION .. 44

6.1. Future development .. 45

7. CONCLUSION .. 46
8. REFERENCES ... 47

FOREWORD

This thesis was conducted at the Center for Machine Vision Research in the University

of Oulu. The thesis was supervised by the Professors Jari Hannuksela and Jani

Boutellier.

First of all I want to thank both my supervisors for the thesis subject and the

invaluable opportunity to be a part of the CMV research group. This offered position

in the University of Oulu has been a great help to me to finish my studies. Secondly, I

would like to sincerely thank the staff of Department of Computer Science and

Engineering for their knowledge and all the co-workers that have assisted me with

some of the problems occurred in the work. Finally, I would also like to thank my

family for all the support they have provided over the years.

Oulu, March 5th, 2015

Sampsa Sarjanoja

ABBREVIATIONS

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

ALU Arithmetic logic unit

ANR Application not responding

API Application programming interface

AWGN Additive white Gaussian noise

BLS Bayes least squares

BM Block-matching

BM3D Block-matching and three-dimensional filtering

CPU Central processing unit

CUDA Compute unified device architecture

DC Direct current

DWT Discrete wavelet transform

FFT Fast Fourier transform

FHD Full high-definition

GFLOPS Giga-floating point operations per second

GPGPU General-purpose graphics processing unit

GPU Graphics processing unit

GSM Gaussian scale mixture

HD High-definition

HSA Heterogeneous system architecture

ILP Instruction-level parallelism

LRU Least recently used

MSE Mean squared error

ND N-dimensional

NL Non-local

NP Nondeterministic polynomial time

OMP Orthogonal matching pursuit

OpenCL Open computing language

OpenGL Open graphics library

OpenMP Open multi-processing

OS Operating system

PC Personal computer

PCA Principal component analysis

PCIe Peripheral component interconnect express

PSF Point spread function

PSNR Peak signal-to-noise ratio

RAM Random-access memory

SA Shape-adaptive

SD Standard deviation

SIMD Single instruction, multiple data

SPMD Single program, multiple data

SNR Signal-to-noise ratio

SAD Sum of absolute differences

SDK Software development kit

SSD Sum of squared differences

SSIM Structural similarity

SVD Singular value decomposition

TLP Thread-level parallelism

TV Total variation

TVD Total variation denoising

UHD Ultra high-definition

𝜎 Standard deviation

𝜎2 Variance

8

1. INTRODUCTION

Noise reduction a.k.a. image denoising is an old problem in the field of image

processing. Albeit it has been studied for decades it is still a valid challenge and the

theoretical limits of restoration are unknown. The state-of-the-art method BM3D

invented by Dabov et al. [1] provides very good results in terms of visual image

quality, but the complexity and the requirements of the algorithm add several

limitations to its usage. Yet image denoising is a required step in many image

processing applications and is often placed near the raw Bayer output in the processing

pipeline to provide a cleaner signal for further processing steps to work with. However

camera systems in different platforms nowadays are required to be quickly operated

and including a modern image denoising implementation in the pipeline might add up

too much latency. Therefore computational speed of denoising algorithms needs to be

considered.

Digital images that are captured with analog sensors always contain digital noise of

some magnitude. Especially pictures taken in low-light conditions have usually much

of clearly visual noise that might ruin the image scenery. The noise is primarily caused

by the thermal changes in the electronic circuits combined with the amplification of

the sensor cells. Additionally, there is photon shot noise where randomly distributed

photons are not shared equally to pixels in the receiving sensor. Therefore the exposure

time relates inversely to the amount of noise; more light, less noise. [2]

Generally noisy images are modeled as

 𝑧(𝑥) = 𝑦(𝑥) + 𝜂(𝑥), 𝑥 ∈ 𝑋 (1)

where 𝑋 is the area of the image, 𝑧(𝑥) is the denoised signal, 𝑦(𝑥) is the original

noiseless signal and 𝜂(𝑥) is the average white Gaussian noise affecting the original

signal. Although there exist various types of noise, AWGN is the one that is typically

modeled in denoising algorithms. Traditionally the quality of a denoising filter has

been measured with the peak signal-to-noise ratio value. The PSNR is defined as the

ratio between maximum possible pixel value and the mean squared error in the image

presented usually in logarithmic decibel scale. [2]

A naïve solution to reduce AWGN in an image would be to filter it with a Gaussian

blur point spread function. This type of filtering can be applied fast and can actually

work well with high resolution images where the noise is small in size compared to

the preservable details in the image. However in most cases the result is a blurred

image with no sharp edges and small details visible, but still with blended noise

artifacts.

A better solution is to exploit the characteristics of natural images. Most pictures

taken are relatively sparse and mainly consist of smooth surfaces with sharp edges.

Thus most of the information is contained in the lower frequencies and the data in

higher frequencies denote the edges and small details. Natural images contain also a

lot of local self-similarities, where similar patterns in image subsets can be found and

matched together. The idea is to compare two or more similar patches of data and

collaboratively filter the differing noise out.

The recent achievements in the field of heterogeneous computing opens up many

opportunities in image processing. The current GPGPU platforms such as CUDA and

OpenCL make it possible to use the massive concurrent processing power of GPUs for

general-purpose computing. A top level view illustrating the parallel capacity in GPUs

9

is shown in Figure 1. This is very appealing for image processing since most

algorithms or at least parts of them can be designed and implemented in parallel

format.

Figure 1. Top level hardware view of a modern PC’s computational resources.

This thesis presents an implementation of the BM3D image denoising algorithm by

utilizing modern parallel processing technologies provided by recent GPGPU devices

and the OpenCL framework. The developed solution outperforms the available

implementations in terms of processing speed and is competitive in denoising quality

accuracy. The aim is to explore the possibilities of harnessing the parallel computing

power of GPU devices to image processing advantages.

10

2. HETEROGENEOUS COMPUTING WITH OPENCL AND

CUDA

In this chapter graphics processing units and their interfaces to general-purpose

computing are discussed. In Section 2.1 the evolvement and general information of

heterogeneous system architectures are presented, and in Section 2.2 GPU computing

and the common issues in developing a GPGPU program are discussed. The Sections

2.3 and 2.4 present brief details about commonly used GPGPU frameworks OpenCL

and CUDA.

2.1. Background and motivation

Traditionally to improve computational performances in computers the clock rates

have been increased. However nowadays this strategy has faced its physical limits and

is not feasible anymore. Other solutions to gain more performance are needed to speed

up the computers. One of these solutions has been the development of superscalar

processors that exploit various techniques of improving instruction-level parallelism

within a single computational unit. On the hardware level this is known as dynamic

parallelism, where the processing unit can, for example, analyze and execute the

instructions out-of-order when applicable. On the software level, ILP is known as static

parallelism, i.e. where the compilers pipeline the instructions in more efficient order.

Another solution is to utilize more parallelization with data parallelism, where

independent data items can be processed separately in different computational units.

This can be achieved with code vectorization, namely with SIMD (single instruction,

multiple data) instructions, where multiple data items are processed with the same

operation simultaneously in parallel. The downside compared to instruction-level

parallelism is that this cannot be done transparently; to run code in parallel processing

units the code usually needs to be rewritten in parallel format.

In the 90s and early 2000s graphics accelerators were evolving mainly for gaming

and multimedia purposes. But after the coming of programmable shaders researchers

saw the opportunity of harnessing the computing power of all the GPU cores available

for general-purpose computation. However the use of graphics libraries, such as

OpenGL and DirectX, for GPGPU computation was tricky and hard to adopt in most

of the software. Fortunately several parallel computing solutions emerged later from

the need of cheap performance alongside easy access to the compute capabilities on

external parallel compute units. NVIDIA’s CUDA platform and the Khronos Group’s

open standard OpenCL are the two most well-known solutions to create parallel

computing applications. Other competing frameworks exist also, namely RenderScript

developed by Google and Microsoft’s DirectCompute.

According to various online sources mobile games market is on the rise

internationally and the graphics quality requirements are more demanding along. In

addition, customer feedbacks on mobile specifications show that having good camera

features on a smartphone is one of the most valued selling characteristics. Therefore

performance boost enablers such as GPGPU frameworks are highly welcomed also on

mobile platforms. Luckily most of the existing heterogeneous computing platforms

used in both desktop and server computing are applicable for mobile usage. Most

concerning difference is the power consumption, which is highly limited on mobile

platforms.

11

2.2. GPGPU computing

Graphics processing units are massively parallel devices, which enable many

opportunities to gain significant performance improvements in most of

computationally expensive programs. Originally GPUs were developed solely to

accelerate graphics rendering in games and 3D processing applications but these days

they are considered to be more generalized parallel processing units. In high level a

GPU nowadays consists of numerous streaming multiprocessors, thread execution

controllers and memory partitions [3].

The execution of multiple parallel threads on a GPU are designed to be run in

groups. These groups can vary in size, but there is a fixed size limit in the streaming

multiprocessors how many threads can be executed simultaneously in a group.

Therefore it is beneficial to use thread group sizes that are divisible by this limit.

NVIDIA and AMD use the terms warp and wavefront respectively to describe this

limit of parallel thread execution in a processor.

Typically programs are either limited arithmetically or by memory bandwidth.

Arithmetically limited programs use more time computing the output of an algorithm

compared to moving data between different memories during calculations, and

bandwidth-limited is the opposite. This is described with the term arithmetic intensity,

i.e. number of operations per memory-word transferred. Nowadays the processing

hardware is mostly memory bandwidth-limited, because the development on memory

access latencies has been slower than the development on arithmetic processing unit

speeds [4]. Therefore optimizing the memory accesses should be the primary concern

in algorithm design, especially in GPU computing since there is usually a lot of data

exchange between host and GPU device memories.

2.2.1. GPU memory types

To hide high memory access latencies multiple arithmetic operations can be scheduled

during the access time, where the data is independent of the queried memory data.

However when there are data dependencies the arithmetic units will be stalled. To

compensate this and improve arithmetic intensity there are various types of memory

included on GPU architectures.

Registers

Registers are banks of memory dynamically partitioned in a register file, which is an

on-chip memory that has minimum amount of access latency on a GPU. Each

multiprocessor has one register file with a fixed size, e.g. 256 KB per multiprocessor

on NVIDIA’s Kepler architecture. Registers are allocated and assigned to threads and

each register memory slot is accessible by only a single thread at a time. Because

amount of registers available is limited they are mainly used for storing local variables

in functions. Local variables that cannot fit in the registers are spilled to larger but

slower memories. [5]

Shared memory and L1 cache

Another type of fast on-chip memory available on a GPU is the shared memory. This

memory has two purposes in the Kepler architecture and is divided into two partitions:

12

L1 cache and shared memory. These partition sizes are configurable in CUDA. The

L1 cache partition might not be available on all modern GPU platforms, but the shared

memory is most likely. The main objective of this memory is to reduce the amount of

memory access transactions between on- and off-chip memories. It is also shared

amongst the thread groups executing in the same streaming multiprocessor, and

therefore the memory can be used for inter-thread communication within a thread

group. Typically data that is required by multiple threads simultaneously is cached in

shared memory, e.g. data with dependency on neighborhood or sequential reads of

independent data. The L1 cache behaves as an LRU cache and is designed for spatial

reuse of data, not for temporal [6].

L2 cache

As with the L1 cache, L2 works also as an automatic LRU cache. This memory caches

accesses to the global memory and is shared amongst all the streaming

multiprocessors. The main objective of the cache is to avoid having the bottleneck on

global memory bandwidth.

Constant memory

The read-only constant memory is for storing constant variables used by multiple

threads. This memory is usually located off-chip but is cached on-chip to reduce

memory transactions.

Global memory

The slowest memory type on a GPU is the global memory. The off-chip global

memory has high access latency compared to on-chip memories but offers a lot more

capacity, which is nowadays in gigabyte magnitude. The access latency is several

hundreds of clock cycles and is therefore about ten times slower than on-chip

memories.

Sometimes parts of global memory are addressed as local memory. This memory is

local in scope of a thread, i.e. only accessible by a single thread, and the purpose is to

extend threads’ available local memory. It should not to be confused with OpenCL

terminology of local memory, which means the same as the shared memory described

earlier. More of these differences in terminology can be seen in Table 1 below.

Table 1. Terminology differences between OpenCL and CUDA.

OpenCL CUDA

Compute unit Multiprocessor

Processing element CUDA core

Work-item Thread

Work-group Block

NDRange Grid

Private memory Local memory

Local memory Shared memory

Local ID Thread ID

Global ID Block ID ∗ Block size + Thread ID

13

Texture memory

Texture memory is an off-chip memory which has a special purpose of storing texture

images. Likewise to constant memory, texture memory is also cached on-chip. Images

are saved into this memory by taking advantage of spatial locality. Also several

hardware benefits are often designed for this memory such as automatic normalization

and image boundary handling.

2.2.2. Accessing GPU memories

Generally GPU architectures are structured to access several memory banks

simultaneously. To take advantage of the full potential of a GPU unit’s memory

bandwidths, all memory accesses should be done in a coalesced and aligned manner

since memory locations are divided into fixed-size segments. This allows multiple

memory addresses in a segment to be bundled and available via a single load or store

transaction. Examples of aligned sequential and non-sequential accesses are shown in

Figure 2.

Figure 2. Efficient memory access patterns.

Non-sequential access patterns inside a segment have no degrading impact on

performance, since the banks accessed reside in the same memory transaction as in

sequential. However access patterns with offset or strides will most likely result in

multiple transactions needed to perform the data exchanges. These inefficient

14

behaviors are illustrated in Figure 3, where more than one transaction are needed to

transfer the data. [7]

The shared memory is also divided into memory banks which are equally sized areas

in the memory that can be accessed simultaneously. The rules for simultaneous

accesses and efficient bandwidth usage vary between different devices. Generally if

any of the banks have multiple threads accessing to it at the same time, a conflict will

occur and the requests will be serialized. However NVIDIA’s recent technology allows

concurrent access from multiple threads to different words in the same shared memory

bank [8].

Figure 3. Performance degrading memory access patterns.

2.2.3. Occupancy

Occupancy is defined as the amount of parallel threads divided by the maximum

amount of parallel threads in a GPU. Therefore occupancy is a measure of thread-level

parallelism. Another contributing factor to computational performance is instruction-

level parallelism which is a measure of how many operations a multiprocessor can

perform simultaneously.

A common pitfall in hiding memory access latencies is to try raising the occupancy

by increasing the amount of threads and thread blocks in parallel execution, but

according to Volkov [9] it might be more useful to lower occupancy to gain better

throughput with instruction-level parallelism. This is because when less threads are

used, more registers are possibly available for a single thread to use and the data in

15

process will not spill to slower memories. Commonly the on-chip shared memory is

considered to be as fast as the registers but this is a misconception because the

maximum bandwidth available in register transfers is about six times greater than in

shared memory.

2.2.4. Branch divergences

Since GPUs use mainly data parallelism, efficient use of GPU resources require that

all concurrent threads follow the same execution paths. Conditional clauses in the code

do not conform to this requirement, and using them should be kept to minimum. When

there is a condition in the code, part of the threads need to stall while other threads

continue executing the branch. This may result in significant performance losses. [7]

One possible strategy to minimize the performance penalties of branch divergences is

to use branch predication, where the use of jump instructions is replaced with predicate

logic. The output of both branches are computed, and only after that a decision is made

which output to use. This technique may increase the amount of instructions in the

code but can be more effective in pipelined execution. Example code of branch

predication is shown in Listing 1.

Listing 1. Code sample of branch predication.

// Without predication

if (condition) x = y;

else x = z;

// With branch predication

pred = -(condition);

x = (pred & (y)) | ((~pred) & z);

2.3. OpenCL standard

OpenCL aims to bring parallelization to another level by mixing different

computational units together under same standard to be usable with a single application

programming interface. Originally developed by Apple Inc., OpenCL is currently

overseen by Khronos Group, a nonprofit industry consortium for creating open

standards for graphics, rich media and parallel computation [10]. The OpenCL

platform model is shown below in Figure 4.

Figure 4. Platform model of OpenCL framework.

16

The execution model of the OpenCL requires that the problem to solve with the

framework should have some dimensionality, which may be up to three dimensions.

The division of the workload can be seen in Figure 5. Each work-item is uniquely

indexed globally and intended to be processed by one kernel invocation, and multiple

work-items are grouped and processed simultaneously in warp or wavefront -sized

batches inside compute units. A work-item is an abstract concept and can be defined

according to the algorithm and data requirements in question. OpenCL kernels are

executed in SPMD style so that many kernel instances of a single kernel process the

varying data of work-items in parallel in multiple processing elements. Different

kernel runs are queued and run sequentially. Before running the kernels they are

compiled in runtime. [11]

Figure 5. N-dimensional presentation of work-groups and -items.

The memory model in OpenCL follows the available memories in GPUs closely.

There are some differences in terms used to describe memory regions, e.g. local

memory equals shared memory. A brief illustration of the memory model can be seen

in Figure 6. [11]

2.4. CUDA

NVIDIA introduced CUDA to the industry in 2006, and it was the first available

GPGPU framework [12]. It defines a new programming language for NVIDIA’s GPUs

which extends the C language standard with data-parallel constructs. Currently CUDA

17

is not compliant for overall heterogeneous computing, because it is designed to work

only on NVIDIA’s GPU devices.

The CUDA and OpenCL bear many similarities to each other. Both are implemented

and used with a variation of C language, threads are processed in groups and the

memory models are very similar. However fundamental differences exist in the target

platform design, where OpenCL is truly open heterogeneous solution for general-

purpose parallel programming across various devices and CUDA is mainly designed

for proprietary NVIDIA devices.

The CUDA is designed as a scalar architecture, and because NVIDIA’s OpenCL

implementation depends on the CUDA architecture, the vector data types specified in

the OpenCL specification are mostly not useful in terms of performance on NVIDIA

GPUs. However using the vector data types can add more portability and convenience

to the code and their usage may therefore be justified when developing using NVIDIA

cards.

At the time of writing the tools are arguably more mature in CUDA SDKs. Albeit

NVIDIA GPUs do support OpenCL, the company does not provide principal

debugging tools for the framework.

Figure 6. Memory model used in OpenCL.

18

3. DENOISING ALGORITHMS

In this chapter the most common existing image denoising algorithms are discussed.

The algorithms are split into two categories: spatial- and transform-domain filters. In

Section 3.1 spatial-domain denoising filtering is studied, and in Section 3.2 transform-

domain denoising filters are examined. Section 3.3 describes briefly the K-SVD

dictionary learning denoising method, and Section 3.4 is reserved for the main topic

BM3D algorithm solely. A summary of the shown algorithms is shortly presented in

Section 3.5.

3.1. Spatial-domain filtering

Direct operations on the pixels of an image is described with the term spatial-domain

filtering. Usually a convolution operation is used on the original image in denoising

algorithms. The convolution between the original image 𝑓 and the filter impulse

response or “mask” 𝑤 can be presented as

𝑓′(𝑥, 𝑦) = (𝑤 ∗ 𝑓)(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

, (2)

where 𝑓′ is the filtered image, 𝑥 and 𝑦 image coordinates, 𝑎 and 𝑏 the horizontal and

vertical sizes of the filter mask and 𝑠 and 𝑡 the indices of the filter mask. This however

results in a horizontally and vertically mirrored output image. The mirroring can be

corrected by using correlation instead, where the coefficients are mirrored pre-

emptively as follows

𝑔(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

. (3)

In general denoising operations can be considered as a blurring or smoothing

operations where the highly dense AWGN is averaged out. The challenge is to preserve

the small details and sharp object edges in the noise reduction process. One example

of a smoothing operation is to calculate the moving average for the image. This can be

done with the convolution or correlation Equations 2 or 3 above as

𝑔(𝑥, 𝑦) =

∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎

∑ ∑ 𝑤(𝑠, 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎

 (4)

with the coefficients being weighted as, for example,

𝑤 = (

1 2 1
2 4 2
1 2 1

) . (5)

Since the coefficients are symmetrical in the averaging filter, either convolution or

correlation can be used. A small averaging filter mask is very simple to implement and

19

can do decent denoising on very large images where the noise is relatively small-sized

compared to the details on the image. [13]

3.1.1. Total variation

In 1992, Rudin et al. presented the original concept of total variation based noise

removal algorithms [14]. The main objective is to restore the signal by minimizing the

total variation norm of the estimated solution. This can be described as a differential

equation optimization problem as follows:

min
𝑥

{𝐹(𝑥) =
1

2
∑(𝑦(𝑛) − 𝑥(𝑛))

2
𝑁−1

𝑛=0

+ 𝜆 ∑|𝑥(𝑛) − 𝑥(𝑛 − 1)|

𝑁−1

𝑛=1

}, (6)

where 𝑦 is the noisy input signal, 𝑥 is the estimated denoised signal, 𝑁 is the amount

of samples, and the second term defines the actual total variation. 𝜆 is a regularization

parameter which alters the amount of total variation in the result. With 𝜆 = 0 the

output remains unchanged compared to the input. The first term is a measure of

distance as a sum of squared differences to deduce the sample’s closeness after TV

reduction. Likewise to other denoising methods the closeness is used to keep the edges

sharp in the noise reduction.

Since the concept defines an optimization problem which requires solving a

differential equation, multiple algorithms have been developed to overcome this. One

of the more modern solutions for 2D image denoising is Chambolle’s algorithm [15].

TVD algorithms have been surpassed by newer methods like NL-means and BM3D,

but are still included in this thesis for more complete comparison.

3.1.2. Neighborhood filters

All image denoising filters that are designed to restore a pixel by averaging its

neighboring similar gray level pixels are considered as neighborhood filters. These

filters are generally considered to be of the form

𝑓 =

∑ 𝑤𝑖,𝑗𝑦𝑗𝑗∈Ω

∑ 𝑤𝑖,𝑘𝑘∈Ω
, (7)

where Ω is the area of the input image, and the estimated image 𝑓 is a weighted average

of the noisy image 𝑦 and the weights 𝑤 may depend on values of 𝑦.

Buades et al. present Yaroslavsky, SUSAN and Bilateral filters briefly in their

research on developing the NL-means algorithm [16, 17]. According to these

published papers these filters do not differ significantly in practice. Typically these

filters do not blur the edges due to the fact that pixels are averaged based on the

reference pixel’s region. However since the pixel gray levels are individually

compared the results are very vulnerable to noise in single pixels. Also these methods

may generate artificial shocks in the output images.

20

3.1.3. Non-local means

Non-local means is one of the most successful denoising methods available in spatial-

domain filters. In contrast to neighborhood filters, the algorithm takes into account not

only the neighboring pixels of a reference pixel but compares non-local patches of

pixels to each other. Patches are fixed-size, e.g. 3x3, 5x5, 7x7, etc. Non-locality of the

algorithm comes from the fact that the patches can in theory locate anywhere in the

image. In practice, the patch locations are limited inside a fixed-size search window to

reduce computation. Euclidean distances between patches are measured and each

output pixel is a sum of weighted averages, where the weights come from the patch

distances in the neighborhood of the reference patch. Larger weights are given to pixels

with a similar intensity neighborhood, i.e. patches that are similar to the reference

patch. [16]

The discrete form of the NL-means algorithm to estimate a pixel value 𝑁𝐿[𝑣](𝑖) at

location 𝑖 is

𝑁𝐿[𝑣](𝑖) =

1

𝑍(𝑖)
∑ 𝑤(𝑖, 𝑗)𝑣(𝑗)

𝑗∈Ω

, (8)

where Ω is the area of the original noisy image, 𝑖 and 𝑗 two pixel locations in the image

and 𝑣(𝑖) is the unfiltered pixel value at 𝑖. The normalizing factor 𝑍(𝑖) is given by:

 𝑍(𝑖) = ∑ 𝑤(𝑖, 𝑗)

𝑗∈Ω

, (9)

and 𝑤(𝑖, 𝑗) is the weighting function which can vary in applications. Usually a

Gaussian weighting function is used:

𝑤(𝑖, 𝑗) = 𝑒
−

𝐹∗|𝑣(𝒩𝑖)−𝑣(𝒩𝑗)|
2

ℎ2 ,
(10)

where 𝒩𝑘 denotes a fixed-size square neighborhood centered at pixel k and h is a

degree of filtering parameter. The function essentially calculates the Euclidean

distances between patches by taking sums of squared differences of them and

weighting the distances with Gaussian distribution. Symbol 𝐹 denotes a weight

function for SSD calculation which usually is a box function or another Gaussian

function. With 𝐹 being a Gaussian function it is possible to weight the distances to be

focused on the pixels near center of a patch, while the box function weights simply 1

for all pixels inside a patch and 0 for the rest. [16]

3.2. Transform-domain filtering

In Section 3.1 we looked at typical denoising methods in spatial-domain, how they

access and change data based on the actual pixel values. But some information can be

more easily and efficiently manipulated in the frequency domain, where the image data

is decomposed into its frequency components, e.g. to a sum of cosine functions. There

are several options to choose the transform method from, and different methods vary

21

in computational complexities and output characteristics. Generally these transform

methods are split into two categories: wavelet and Fourier transform based methods.

According to the Fourier theorem [13] the convolution operation used in spatial-

domain is equal to single multiplication operation in transform-domain. This means

that convolution in Equation 2 can be rewritten as

 𝑓′ = 𝑤 ∗ 𝑓 = 𝑊 ∙ 𝐹, (11)

where 𝑊 and 𝐹 are the transform-domain representations of the filter mask and

original image. The multiplication in transform-domain is computationally

significantly less complex than the convolution operation in spatial-domain, which

often leads to faster algorithm implementations, although the transformation back and

forth spatial to transform-domain adds overhead to the processes. Therefore a lot of

research has been done in the field of frequency-domain transformations. There are

multiple algorithms for both wavelet and Fourier transforms available. Currently some

of the fastest DWT methods are Haar [18] and Walsh-Hadamard [19] transforms.

Some of the fastest DCT methods are BinDCT [20], AAN DCT [21] and Loeffler’s

DCT [22].

3.2.1. Wiener filter

One of the earliest known image restoration strategies is to use a Wiener filter. The

filter produces an output which minimizes the statistical error based on a cost function.

Usually mean squared error is used as a cost function:

 𝑒2 = 𝐸 {(𝑓 − 𝑓)
2
}, (12)

where 𝑓 is the original signal and 𝑓 is the estimate of the original signal after filtering,

and 𝐸 denotes the expectation. The task is to find the coefficients that provide the

output up to the expectation. The filter can be presented for images in transform-

domain as

𝐹̂(𝑢, 𝑣) =

[

1

𝐻(𝑢, 𝑣)

|𝐻(𝑢, 𝑣)|2

|𝐻(𝑢, 𝑣)|2 +
𝑆𝜂(𝑢, 𝑣)

𝑆𝑓(𝑢, 𝑣)⁄
]

𝐺(𝑢, 𝑣), (13)

in which 𝐹̂(𝑢, 𝑣) is the estimated original signal and 𝐺(𝑢, 𝑣) is the observed noisy

signal in transform-domain, 𝐻(𝑢, 𝑣) is the PSF (point spread function) used, and 𝑆𝑘 is

the power spectral density of a signal. The ratio of power spectral densities is the

inverse of the signal-to-noise ratio, and is most likely unknown. The ratio can be

replaced with some constant value 𝑅, which can be evaluated empirically in the

filtering process. [23]

Because the Wiener filter is about minimizing the effect of a cost function and is not

very complex to implement, it is also widely used within other image restoration

algorithms. Some examples of these algorithms can be seen in the next sections.

22

3.2.2. BLS-GSM

BLS-GSM, proposed by Portilla et al. in 2003, is a modern image denoising method

that utilizes wavelets. Its basic idea is to model the original image properties of each

neighborhood in a noisy image in wavelet domain using a mixture of scaled Gaussians

(GSM), and then estimate the reference image coefficients by computing the Bayes

least squares (BLS) estimates. The final solution is a weighted sum of local Wiener

estimates of each neighborhood produced from covariance matrices of known noise

and observed neighborhoods. [24, 25]

The Gaussian scale mixture is used to model the wavelet pyramid coefficients, and

is defined as

 𝑥 = √𝑧𝐮, (14)

where 𝑧 is an independent positive scalar random variable and 𝐮 is a zero-mean

Gaussian vector [26]. The square root of 𝑧 is used to simplify the expressions in further

equations. The model can be applied to the noisy image model as

 𝑦 = 𝑥 + 𝜂 = √𝑧𝑢 + 𝜂. (15)

The BLS estimation is calculated as

𝐸{𝑥|𝐲} = ∫ 𝑝(𝑧|𝐲)𝐸{𝑥|𝐲, 𝑧}𝑑𝑧

∞

0

, (16)

which essentially is a 𝑝(𝑧|𝐲) weighted sum of 𝐸{𝑥|𝐲, 𝑧} local Wiener estimates, where

𝐸{𝑥|𝐲, 𝑧} =

𝑧𝐂𝑢

𝑧𝐂𝑢 + 𝐂𝜂
𝐲. (17)

The variables 𝐂𝑢 and 𝐂𝜂 denote the covariance matrices computed from the observed

and known noise neighborhoods. [24, 25]

3.3. K-SVD

Some denoising methods are based on machine learning. K-SVD algorithm is one of

the existing dictionary learning algorithms that has been applied successfully to image

denoising. The goal is to be able to reconstruct a signal by using a sparse representation

of the signal over an overcomplete set of basis (the dictionary), and to learn from the

provided data and add the learnings to the dictionary. To have results the dictionary

needs to be initialized with some basis to begin with, e.g. basis of DCT or a training

set from a database. [27]

K-SVD algorithm is essentially a generalization of k-means [28] clustering

algorithm. The denoising algorithm has two stages: sparse coding stage and dictionary

update stage. In the sparse coding stage an approximated solution for the sparse

representation of the signal is solved from the NP-hard problem

23

 min
α

‖α‖0
0 s. t. ‖𝐃α − y‖2

2 ≤ (𝐶𝜎)2, (18)

by using a pursuit algorithm, e.g. OMP [29]. The symbol α denotes the sparse

representation vector, 𝐃 the dictionary, 𝑦 the noisy image and 𝐶 the noise gain.

In the dictionary update stage the contents of the atoms in the dictionary are re-

evaluated. For each atom that is active, a set of patches from α is collected and used to

compute the error in representation:

 𝐞𝑖𝑗
𝑙 = y𝑖𝑗 − ∑ 𝐝𝑚α𝑖𝑗(𝑚)

𝑚≠𝑙

, (19)

where 𝐄𝑙 is the error matrix with columns 𝐞𝑖𝑗
𝑙 and 𝐝𝑚 an atom in the dictionary.

Singular value decomposition (SVD) is then applied to the error matrix 𝐄𝑙 and the

atom values are updated with the resulting coefficient values. [27]

3.4. BM3D algorithm

In this section the main topic of this thesis, BM3D algorithm [1], is studied. The BM3D

algorithm combines the best of both spatial- and transform-domain methods. Likewise

to NL-means algorithm, BM3D utilizes also patch distances to gather similar pixel

groups together to reveal self-similarities of the patches under the noise. This patch

comparison is called block-matching, where the name of the algorithm also refers to.

The “3D” part of the name comes from stacking the matching blocks into a 3-

dimensional image to be able to use collaborative filtering on them. This collaborative

filtering reveals the finest details shared by the blocks while keeping the unique

features of individual blocks mostly untouched. [1, 2]

There are multiple variations and extensions to the algorithm for different

applications. The basic algorithm named BM3D is mainly for processing grayscale

still images. Other algorithms are listed below:

 C-BM3D – a color extension to the basic algorithm,

 V-BM3D – an extension for grayscale video processing,

 BM3D-SH2D and BM3D-SH3D – a variation to sharpen an image using

BM3D filter,

 BM3D for deblurring – a variation to use BM3D for deblurring an image,

 SA-BM3D – a variation with shape-adaptive grouping via block-matching,

 BM3D-SAPCA – a variation using shape-adaptive principal component

analysis. [2]

3.4.1. Structure

The algorithm is divided into two major steps as shown in Figure 7. The first step

focuses on producing an image which has significantly less noise than the noisy image.

This image is a basic estimate of the original noiseless image. In the second step the

basic estimate is used as a block-matching base for empirical Wiener filtering.

According to Dabov, this second step has been empirically confirmed to improve the

image quality compared to the first step output [2].

24

Figure 7. High-level flowchart of the BM3D algorithm.

3.4.2. Block-matching

The grouping of the blocks is realized by block-matching. Blocks that have high

similarity with the reference block are considered for a group. The similarity is

measured with a distance function

𝑑noisy(𝑍𝑥𝑅
, 𝑍𝑥) =

‖𝑍𝑥𝑅
− 𝑍𝑥‖2

2

(𝑁1
ht)

2 , (20)

where 𝑥 is a 2D coordinate in the noisy image, 𝑥𝑅 the coordinate of the reference block,

𝑁1
ht the length of a side of a square block and 𝑍𝑘 a noisy fixed-size block located at

25

coordinate 𝑘. The distance is effectively measured as sums of squared differences

between blocks.

According to Dabov et al. [1] the distance function presented in Equation 20

produces good results when the standard deviation 𝜎 is low and the size 𝑁1
ht is not too

small, but with high 𝜎 or small 𝑁1
ht the probability densities of distances can overlap

heavily. Thus to avoid this problem the block-matching can also be done in transform-

domain with thresholded coefficients:

𝑑(𝑍𝑥𝑅
, 𝑍𝑥) =

‖Υ´ (𝒯2D
ht(𝑍𝑥𝑅

)) − Υ´ (𝒯2D
ht(𝑍𝑥))‖

2

2

(𝑁1
ht)

2 , (21)

where 𝒯2D
ht denotes a 2-dimensional linear transform and Υ´ a hard-thresholding

operator.

The measured distances are composed into a set of coordinates 𝑆𝑥𝑅
ht , where only the

nearest distances are taken into account by thresholding them with a threshold-value

𝜏match
ht :

 𝑆𝑥𝑅
ht = {𝑥 ∈ 𝑋 ∶ 𝑑(𝑍𝑥𝑅

, 𝑍𝑥) ≤ 𝜏match
ht }. (22)

3.4.3. Collaborative filtering

Now the nearest blocks for a reference block are known and can be stacked together

to form a group of blocks for further processing. Linear transformation is applied to

the group 𝑍𝑆𝑥𝑅
ht . This transformation reveals the shared features between blocks

efficiently. In the transformed data the shared features have large coefficients while

the noise is mostly presented with small coefficients. By thresholding these small

coefficients to zero it is possible to reduce noise significantly and keep the unique

details in place. The collaborative filtering can be presented as

 Ŷ
𝑆𝑥𝑅

ht
ht = 𝒯3D

ht−1
(Υ(𝒯3D

ht(𝑍𝑆𝑥𝑅
ht))), (23)

where Ŷ
𝑆𝑥𝑅

ht
ht is the resulting filtered group of blocks in spatial domain and Υ the hard-

thresholding operator. The 3D linear transform 𝒯3D
ht is usually implemented as separate

2D and 1D linear transformations. If 𝜎 is high, the 2D linear transformed blocks from

distance calculation can be used here to avoid redundant transformations. The filtering

process is illustrated in Figure 8 and the 3D transform can be seen in Figure 9.

Different types of linear transformations can be used for the filtering and the output

quality may vary based on the selected transformation type combined with hard

thresholding. Also each transform has their own computational complexities. In

general, Haar wavelet transformation and Walsh-Hadamard transformation are the

fastest options, because these transformations can be calculated with only a few

addition operations.

26

Figure 8. Processing of one block with collaborative filtering. The reference block is

shown with blue borders and the nearest matching blocks with red borders.

The filtered blocks are repositioned and aggregated to the output image.

27

3.4.4. Aggregation

After filtering the group of blocks, they need to be put back in place to the result image.

Each group may however have different amount of noise to begin with and this should

be compensated. Dabov et al. propose that instead of taking into account all the effects

of differencing variances and biasing within individual pixels, it is enough to give more

weight to blocks with less noise and less weight to those with much noise. This is done

by calculating the amount of non-zero coefficients in a group 𝑁har
𝑥𝑅 after thresholding

and creating the weight 𝑤𝑥𝑅
ht based on that as

𝑤𝑥𝑅
ht = {

1

𝜎2𝑁har
𝑥𝑅

,

1,

if 𝑁har

𝑥𝑅 ≥ 1

otherwise
. (24)

With the weight 𝑤𝑥𝑅
ht the group can be aggregated into the result image as a weighted

average. Because the blocks inside a group may overlap, the result of summing the

weighted averages needs to be normalized by dividing the result with the sum of the

weights. The result image ŷbasic becomes then

ŷbasic(𝑥) =
∑ ∑ 𝑤𝑥𝑅

htŶ𝑥𝑚

ht,𝑥𝑅(𝑥)
(𝑥)

𝑥𝑚∈𝑆𝑥𝑅
ht𝑥𝑅∈𝑋

∑ ∑ 𝑤𝑥𝑅

ht
𝑥𝑚∈𝑆𝑥𝑅

ht 𝜒𝑥𝑚𝑥𝑅∈𝑋 (𝑥)
, ∀𝑥 ∈ 𝑋 (25)

where 𝜒𝑥𝑚
 is an operator which is 1 in the area of a block and 0 outside, and 𝑋 is the

area of the input image.

3.4.5. Wiener filtering

To further improve the quality of the BM3D algorithm, in step 2, Wiener filter is used

in co-operation with the basic estimate from step 1. The SSD distance calculation is

performed again but with the basic estimate Ŷbasic as the base image:

Figure 9. 3D linear transformation as separate 2D and 1D transformations.

28

𝑆𝑥𝑅
wie = {𝑥 ∈ 𝑋 ∶

‖Ŷ𝑥𝑅
basic − Ŷ𝑥

basic‖
2

2

(𝑁1
wie)

2 ≤ 𝜏match
wie }. (26)

𝑆𝑥𝑅
wie denotes the set of nearest block coordinates for a reference block positioned at

𝑥𝑅 in the basic image. The empirical Wiener filter shrinkage coefficients for

collaborative filtering in the second step are defined as

𝐖𝑆𝑥𝑅
wie =

|𝒯3D
wie (Ŷ

𝑆𝑥𝑅
wie

basic)|
2

|𝒯3D
wie (Ŷ

𝑆𝑥𝑅
wie

basic)|
2

+ 𝜎2

. (27)

The stack of blocks 𝑍𝑆𝑥𝑅
wie, which are the corresponding blocks at coordinates 𝑆𝑥𝑅

wie in

the noisy image 𝑍, is 3D linear transformed and filtered by using the Wiener shrinkage

coefficients 𝐖𝑆𝑥𝑅
wie. Finally the filtered stack is inverse transformed back to spatial

domain. This process is as follows:

 Ŷ
𝑆𝑥𝑅

wie
wie = 𝒯3D

wie−1
(𝐖𝑆𝑥𝑅

wie𝒯3D
wie(𝑍𝑆𝑥𝑅

wie)), (28)

where the output Ŷ
𝑆𝑥𝑅

wie
wie is the final denoised image estimate from step 2. This image

still needs to be aggregated and normalized as in step 1 (Equation 25) with weights

𝑤𝑥𝑅

wie = 𝜎−2 ‖𝐖𝑆𝑥𝑅
wie‖

2

−2

, (29)

where the weights are derived from the 𝑙2-norm of the filter coefficients.

3.5. Summary

The existing denoising methods were briefly described in the previous sections. The

denoising methods are generally split into three major categories:

 spatial-domain filters,

 transform-domain filters and

 machine learning algorithms.

In general, the denoising methods are designed to filter out simulated AWGN. The

current state-of-the-art for denoising is the BM3D algorithm, which provides superior

PSNR results in simulated AWGN filtering comparisons most of the time. BM3D has

evolved from the earlier available methods and combines the best of them by utilizing

non-locality with block-matching, transform-domain benefits with collaborative

filtering and optimal minimum MSE output with the final Wiener filter.

When considering the computational complexities of the algorithms and their

suitability for GPGPU computing, the algorithms that require less data to process one

sample, produce a singular output item and have less complexity are in general more

29

suitable. The NL-means algorithm has been proven to be well suited to GPGPU

computation. Several implementations of NL-means using GPGPU have emerged in

the field of biomedical image processing, where the algorithm has been extended to

support also multidimensional denoising of magnetic resonance images or video

sequences [30, 31]. With a small search window the computational complexity is low

and it is possible to implement the NL-means filter by using solely deterministic

calculation. Other GPU implementations of wavelet-based [32], adaptive bilateral

filtering [33] and Gaussian blur [12] image denoising algorithms exist also.

30

4. BM3D FILTER IMPLEMENTATION

The main objective of this thesis was to design an implementation of the BM3D image

denoising algorithm presented in Chapter 3 by using the parallel processing methods

provided by the OpenCL framework presented in Chapter 2. In this chapter the

implementation and its design challenges are discussed. In Section 4.1 the reference

implementations are shown, and Section 4.2 describes the new solution in more detail.

4.1. Reference implementations

At the time of writing only one implementation of the BM3D algorithm with open

source code exists online. This program, created by Lebrun [34], is done using standard

C++ and is compilable on various operating systems with minor changes. The program

executes only on host machine CPU, but can be compiled to use multi-threading with

OpenMP library [35]. It has also some features, such as color channel processing,

integral images and standard deviation estimation, which are missing from the

presented implementations.

Another implementation for reference use is the application created by the original

author of BM3D algorithm [1]. However the source code of the application is not

available in public and therefore design choices cannot be fully compared with the

implementations presented in this paper. The performance can still be measured and

will be compared in Chapter 5.

4.2. OpenCL implementation

The work was started by designing and building a prototype MATLAB model of the

algorithm for validating the functioning of the upcoming OpenCL implementation

version. This prototype model had no parallelism included and was very inefficient in

terms of performance. However the benefit was to have better knowledge of the

algorithm beforehand.

The actual OpenCL implementation was done using ANSI C code in the host

application and OpenCL version 1.1 in the kernel code. An OS independent host

application using Qt framework was also created for testing the OpenCL program in

different operating systems, e.g. in Android.

The OpenCL kernel code consists of three kernels: calc_distances,

bm3d_basic_filter and bm3d_wiener_filter. A data flow diagram of

the kernels is shown in Figure 10. Both steps of the BM3D algorithm use the

calc_distances kernel first and then the respective kernel. The

calc_distances kernel does the block-matching step of the algorithm described

in Section 3.4.2. It saves the positions of 𝑁1 nearest blocks for each reference block

into a memory area in global memory in a cached manner. These positions are used in

multiple kernels simultaneously.

As the naming suggests, the bm3d_basic_filter kernel does the step of

creating the basic estimate image described in Sections 3.4.3 and 3.4.4. Each kernel

instance produces a singular portion of the output image. The size of this portion is

fully configurable and has effect on the performance. The parallelization of the

algorithm is discussed in more detail in the following Section 4.2.1. Lastly the

31

bm3d_wiener_filter kernel is responsible for applying the Wiener filtering step,

described in Section 3.4.5, between the noisy original and the basic estimate images.

The kernel functions essentially in the same way than the bm3d_basic_filter

kernel, but requires slightly more register memory because two 3D similar block stacks

are needed to be kept in memory instead of only one.

Figure 10. Data flow in the OpenCL and CUDA kernel codes.

For the use of collaborative filtering, the 3D linear transformation functions were

implemented using the Loeffler’s DCT method [22] for fast computation. As

illustrated in Figure 9, the 3D transform is easily separable into multiple transforms.

Additionally, an option to use 1D Haar wavelet transform method was provided with

32

the implementation. Choosing different transform methods may have some effect on

the denoising quality and performance when filtering an image.

The kernels were coded to use mostly local variables residing primarily in the

register memory area of the execution device. Therefore a single kernel instance

requires much space from the register file on a streaming multiprocessor. This is

because the register memory is the fastest memory to use on a GPU and local variables

are also more convenient to maintain in the code. However using much register

memory forces to have less parallel threads running simultaneously to avoid register

spillage to slow global memory. Hence the occupancy of a GPU is kept rather low in

the implementation.

Using the shared memory efficiently turned out to be problematic in the

implementation. The shared memory is usually relatively small in size; for example on

NVIDIA GeForce GTX 650 GPU there are only 48 kilobytes available to be used in a

work-group. Since one work-group consists of multiple work-items and the data to be

processed is a large two-dimensional area, it was not feasible to fit in all the needed

common readable data. The option in NVIDIA GPUs to use shared memory as a L1

cache was a good compromise to gain some performance improvement.

Similarly to the reference implementation by Lebrun, an option to multiply the

filtered blocks with a Kaiser window was added to the implementation. As originally

proposed by Dabov et al. [1], the window may reduce the border effects visible on the

final images. The window coefficients are illustrated in the Figure 11 below.

Figure 11. 8x8-point Kaiser window with parameter value 𝛽 = 2.

4.2.1. Parallelization

To gain performance benefits from using the GPUs for computing, the BM3D

algorithm had to be designed to be run in parallel. The algorithm showed to be difficult

to parallelize efficiently due to its nature. Algorithms can have several kinds of data

33

dependency patterns between input and output memories. Typically these patterns are

defined as

 one-to-one,

 one-to-many,

 many-to-one,

 many-to-many,

where the left-hand side refers to the memory blocks in the input data array and the

right-hand side refers to the output array. Many-to-N patterns are also known as gather

operations and N-to-many as scatter operations [5]. The BM3D algorithm is the type

of many-to-many pattern, since for one reference block in the image, the neighboring

pixels need to be read widely and the filtering result will be written based on the same

neighboring area, the search window, around the reference block. The scatter patterns

are the most unpreferred type, because they introduce writing race conditions to the

algorithm that must be satisfied.

Two methods for parallelizing the BM3D algorithm were tried when developing the

implementation. First was to map reference blocks into work-items directly and

process each block in kernel instances separately. The output was written in layered

areas in the global memory. Once the work-group had all work-items processed, one

work-item was assigned to merge the intermediate results in the layers into group

results. Then after all groups had processed their items, the host application merged

the group results into the final image. Since the algorithm requires writing the weight

map separately, the memory requirements for the output writings are doubled.

The memory requirements raised an issue with the first method in terms of

scalability. The intermediate results required much of memory space to store and

processing images with greater resolution turned out soon to be impossible. Also

removing the layering by serializing the write operations was not an option when

seeking a true parallel solution.

Figure 12. Neighborhoods to be processed by a thread.

34

The second method is similar to the parallelization used in the reference

implementation by Lebrun [34], and can be seen in Figure 12. In the method, the

memory dependency pattern of many-to-many in the algorithm is redundantly reduced

to be type of many-to-one, which eliminates the need of writing intermediate results

thoroughly. This is achieved by dividing the workload equally between threads by

assigning fixed-size portions of the output image for each thread to compute. Each

portion can be calculated by a single thread by computing and adding also the results

of the neighboring reference blocks which have an effect on the portion. The process

is illustrated in Figure 13. As said, this introduces a lot of redundant calculation in

kernel instances, since the same results are being computed multiple times

concurrently. This method adds a lot of latency in computing a single work-item, but

reduces the overall memory requirements and adds scalability in terms of resolution.

It was noted that the size of a portion should be a multiple of 𝑁step, because then the

results of the block-matching can be cached and reused more efficiently in all filter

threads.

The amount of redundancy depends solely on the size of a portion and the size of a

search window, i.e. the ratio between them. In the implementation of Lebrun, the

overhead is much smaller since the parallel processing is done using OpenMP and the

amount of parallel threads is small, e.g. 4-8 threads processed on a CPU. Therefore the

output image is divided into same amount of portions than there are threads, and

redundant calculation appears only in the border areas of a portion. Then each thread

is responsible for computing a wide area of payload, in contrast to small payload on

massively parallel computation.

Figure 13. One-dimensional illustration of dividing the work-items in equally sized

portions. The results indicated with red lines are discarded as the

neighboring threads are responsible for their computation.

4.2.2. CUDA implementations

The OpenCL kernel code was also ported for the CUDA platform to be able to run the

filter on a NVIDIA SHIELD mobile device. Porting the code was straightforward and

35

did not introduce major challenges to have the filter running on a PC. To be able to

run the CUDA code on the mobile device, a small Android host application was

developed. Fortunately, NVIDIA provided a sample code for loading CUDA

applications and shared libraries on SHIELD devices, and modifying it for BM3D

usage was not a big task.

4.2.3. Problems occurred

Although the OpenCL framework drives forward the idea of consistency in code, this

does not necessarily apply in practice. The BM3D implementation showed that using

the private memory excessively in a complex kernel does not function properly on all

platforms. For example, running the algorithm with a GPU from ATI generated false

results, which can be seen in Figure 14. Also it was not possible to even compile the

code on Qualcomm’s DragonBoard platform without further modifications, because

the compiler crashed always on invocation. It was suspected that the excessive register

usage did not spill to global memory properly in both cases. The code executed without

problems on NVIDIA cards. This ultimately means that despite the code being in a

valid format for OpenCL usage, it usually needs to be modified and optimized for each

platform separately.

Figure 14. Computational errors while processing an image with ATI Radeon HD

5450 GPU: the basic BM3D estimate (left) and the final result (right).

36

5. RESULTS

This chapter presents the results of the designed BM3D algorithm implementation

from Chapter 4. Section 5.1 describes the used testing environment in all test cases in

Sections 5.2-5.5. In Section 5.6 the overall performance based on the results is

evaluated, and in Section 5.7 the results are compared to the reference implementation

results.

The result comparisons focus more on comparing the performances of the

implementations while the statistical image quality (PSNR) is less considered. The

overall performance results are visible in Figure 19 and Figure 20.

The test cases consist of four test images with varying sizes. Images with different

sizes were used because the image size is usually proportional with the execution time

of a filter. The test cases included only grayscale images with no color information

and all the photographs were captured digitally using mobile phone cameras. Three of

the images had different levels of synthetic noise added into them and one image had

significant amount of natural noise. The synthetic and natural noise differ in their

characteristics and therefore the visual quality after filtering and the filter parameter

requirements can also vary between these two. The synthetic noise is only AWGN

added to an image, but the natural noise can consist of various noise types, such as

 photon shot noise,

 speckle noise and

 thermal noise.

The origins of these noise types were discussed in more detail in Chapter 1.

Two different filter parameter profiles were used, and these profiles are described

in detail in Table 2. Five different implementations were compared with each other

having the same filter profile in use in each test case. These five implementations are

referred as Lebrun [34], Original by Dabov et al. [1], OpenCL, CUDA and Mobile

CUDA. The test execution times were averaged from five sequential test runs.

Table 2. Filter parameter profiles used in test cases.

Parameter Description Original profile Modified profile

𝑁1 Block size 8 8

𝑁2
ht 1. step similar block count 16 8

𝑁2
wie 2. step similar block count 32 8

𝑁step Reference block step size 3 7

𝑁S Search window size 39 21

𝑁S,step
ht 1. step search window step size 1 1

𝑁S,step
wie 2. step search window step size 1 1

𝜏match
ht 1. step similarity threshold 2500 2500

𝜏match
wie 2. step similarity threshold 400 400

𝜆2D 2D hard-threshold value 0 0

𝜆1D 1D hard-threshold value 2.7 2.7

𝛽 Kaiser window parameter 2.0 0

𝒯2D 2D linear transform method 2D-DCT 2D-DCT

𝒯1D 1D linear transform method 1D-Haar 1D-Haar1

1The implementation by Lebrun uses 1D Walsh-Hadamard transform instead.

37

5.1. Test environment

The test cases described in the following sections were run on a computer which had

an Intel i5-4570 processor as a CPU, 8 gigabytes of RAM and NVIDIA GeForce GTX

650 GPU. The processor has four physical processing cores and no support for Hyper-

Threading Technology, and the GPU has compute capability version 3.0 and 384

CUDA cores. All tests were run on 64-bit Windows 7 OS. Additionally, NVIDIA

SHIELD which is a mobile Android tablet device with the CUDA platform and a Tegra

K1 192 CUDA core GPU was also used for further comparison in the tests.

5.2. Test case 1: 256 × 256 image with simulated noise

In the first test case a small 256 × 256 sized image is processed. The image is a close-

up shot of a cup with detailed texturing. Synthetic noise is added to the image with

standard deviation of 25. The processed images can be seen in Figure 15 and the

measurement results in Table 3 with the best result in bold type.

Figure 15. Noisy image with 𝜎 = 25 (left, PSNR 20.39 dB) and the OpenCL BM3D

denoised image using the original profile (right, PSNR 28.16 dB).

The results show that when small images are processed, the GPGPU computation

does not add any value in the presented implementations. In fact, the performance is

significantly better when only a CPU is used. The overhead of using a GPGPU solution

is not compensated in the case of small images. A CPU can compute the small image

more efficiently because processing a single step in the BM3D algorithm is generally

faster with a CPU core than with a GPU core, and when the amount of reference blocks

is low the CPU can sequentially process all the blocks faster.

The quality of the output images between the implementations does not vary

notably, except the CUDA implementations suffered moderately from having small

errors in the right and bottom border areas. The implementation by Lebrun uses Walsh-

Hadamard 1D linear transformation in the 3D filtering and the coefficient thresholding

produces slightly different results.

38

Table 3. Test results of test case 1 (256 × 256, 𝜎 = 25).

Profile Implementation

1. step

PSNR

(dB)

2. step

PSNR

(dB)

1. step

time

(ms)

2. step

time

(ms)

Total

time

(ms)
Speedup

Original

Lebrun (4x CPU) 27.58 28.28 616.6 670.8 1287.4 0.71x

Original 27.86 28.31 537.1 375.6 912.7 1.00x

OpenCL 27.72 28.16 666.5 2299.7 2966.2 0.31x

CUDA 27.72 27.77 630.1 2245.6 2875.7 0.32x

Mobile CUDA 27.72 27.77 1339.7 5330.7 6670.4 0.14x

Modified

Lebrun (4x CPU) 27.11 27.63 115.2 139.2 254.4 0.66x

Original 26.99 27.48 124.5 42.4 166.9 1.00x

OpenCL 27.19 27.66 216.4 330.4 546.8 0.31x

CUDA 27.19 27.55 244.1 378.2 622.3 0.27x

Mobile CUDA 27.19 27.55 339.1 507.6 846.7 0.20x

5.3. Test case 2: FHD image with simulated noise

The image in this test case presents several objects with different levels of focus. The

image resolution is 1920 × 1080 pixels and the noise is generated with SD value of 35.

The image and the results can be seen in Figure 16 and Table 4.

Figure 16. A FullHD image filtered with the modified profile using the CUDA

implementation: original image (top-left), noisy image with 𝜎 = 35 (top-

right, PSNR 18.10 dB), result after first step in BM3D filtering (bottom-

left, PSNR 29.99 dB) and final result of BM3D filtering (bottom-right,

PSNR 30.04 dB).

With FullHD images the GPGPU starts to add some value to the computational

performance. With the modified profile the computation of the image is over four times

faster using a GPU with OpenCL than a CPU, and the PSNR is even better with the

39

presented implementations. The implementation by Lebrun was not able to process

FullHD images, and the reason for this is discussed in more detail in Section 5.6. It

took too long for the mobile CUDA implementation to process the FullHD image with

the original filter profile and an ANR halted the execution.

Table 4. Test results of test case 2 (1920 × 1080, 𝜎 = 35).

Profile Implementation

1. step

PSNR

(dB)

2. step

PSNR

(dB)

1. step

time

(ms)

2. step

time

(ms)

Total

time

(ms)
Speedup

Original

Original 29.83 29.97 22733.3 17422.7 40156.0 1.00x

OpenCL 29.99 30.05 13461.0 47488.0 60949.0 0.66x

CUDA 29.99 30.04 12324.0 42101.0 54425.0 0.74x

Modified

Original 28.95 29.28 3638.5 1789.2 5427.7 1.00x

OpenCL 29.28 29.57 559.0 703.2 1262.2 4.30x

CUDA 29.28 29.57 629.6 757.8 1387.4 3.91x

Mobile CUDA 29.28 29.57 1867.0 1715.7 3582.7 1.51x

5.4. Test case 3: UHD image with simulated noise

The third image has a resolution of 3840 × 2160 pixels, which is four times larger than

the FHD resolution. AWGN with large SD (𝜎 = 100) was simulated into the image.

The image and the filtering results are shown in Figure 17 and Table 5.

Figure 17. A 4K UHD image filtered with the OpenCL implementation: original

image (top-left), noisy image with 𝜎 = 100 (top-right, PSNR 10.76 dB),

result with modified profile after first step of BM3D filtering (bottom-left,

PSNR 20.49 dB) and final result of BM3D filtering (bottom-right, PSNR

19.61 dB).

4K images are four times larger than the FullHD images. Therefore significant

performance gains can be predicted when a more parallel solution is used. The results

40

confirm this prediction when the lower quality profile is used. Only the original

implementation was able to process the test image with the original filter profile. The

others timed out after computing for too long. The reason for this is that with the

original profile a GPU thread’s private memory usage exceeds its limits. Surprisingly

the visual quality is slightly better with the modified profile.

Table 5. Test results of test case 3 (3840 × 2160, 𝜎 = 100).

Profile Implementation

1. step

PSNR

(dB)

2. step

PSNR

(dB)

1. step

time

(ms)

2. step

time

(ms)

Total

time

(ms)
Speedup

Original Original 19.62 19.25 47095.4 58842.3 105937.7 1.00x

Modified

Original 19.05 19.18 11400.0 6499.3 17899.3 1.00x

OpenCL 20.49 19.61 1070.8 1312.2 2383.0 7.51x

CUDA 20.49 19.61 1340.8 1488.0 2828.8 6.33x

Mobile CUDA 20.49 19.61 6563.4 6076.6 12640.0 1.42x

5.5. Test case 4: Real image with natural noise

The influence of the BM3D filter is based on the standard deviation parameter; i.e.

larger SD implies less noise and possibly more filtering artifacts. The fourth test case

has an image with natural noise instead of simulated, and therefore the SD needs to be

estimated. The image has a resolution of 960 × 1280, and the image was chosen for

the test because of the excessive noise, which is visible in multiple forms. That is, not

only AWGN equivalent noise is present. Filtering with SD value of 25 was selected

manually and appeared to produce the best results in terms of subjective visual quality.

The image and the results can be seen in Figure 18 and Table 6.

Figure 18. A photograph with excessive noise taken in low-light conditions (left) and

the BM3D filtered version using modified profile and 𝜎 = 25 (right).

41

With this image it is impossible to compare the statistical image quality, because the

ground truth is not known due to the presence of natural noise. However it was

subjectively estimated that the original profile did not produce significantly better

visual quality image output. With both profiles the AWGN was efficiently reduced in

the image, but other noise types, such as speckle noise, still persist in the image. As

the image is smaller than, for example, the FullHD image, the performance gain of

parallelization is also smaller.

Table 6. Test results of test case 4 (960 × 1280, 𝜎 = 25).

Profile Implementation

1. step

time

(ms)

2. step

time

(ms)

Total

time

(ms)
Speedup

Original

Original 9007.0 8826.7 17834.0 1.00x

OpenCL 7617.4 27808.0 35425.4 0.50x

CUDA 7007.0 24933.0 31940.0 0.56x

Modified

Lebrun (4x CPU) 1647.4 1906.2 3553.6 0.79x

Original 1888.9 918.9 2807.8 1.00x

OpenCL 366.1 542.8 908.9 3.09x

CUDA 418.9 570.3 989.2 2.84x

Mobile CUDA 852.1 989.4 1841.5 1.52x

5.6. Overall performance

The original filter profile turned out to be problematic for the GPU implementations.

This was mostly caused by having more workload and private memory requirements

per thread. The larger search window 𝑁𝑆 adds latency for each thread, and greater 𝑁2

values cause more private memory to be used by a thread. The memory usage is spilled

to slower global memory and then threads slow down due to memory latencies. Greater

register usage also implies also that less threads can be run in parallel efficiently.

Figure 19. The execution times using the original filter profile.

0

20000

40000

60000

80000

100000

120000

512x512 960x1280 1920x1080 3840x2160

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Resolution (pixels)

Original profile

Lebrun

Original

OpenCL

CUDA

Mobile CUDA

42

The results that are missing from the table denotes a failure in the execution of the

application in question. The failures in the implementation by Lebrun occurred

because it uses integral images [36] to speed up the patch distance evaluation, and this

uses memory excessively. Therefore it was not possible to run most of the larger

resolution image tests at all due to running out of memory. In GPU applications the

failures took place because of timeouts invoked by the GPU drivers in the test

platforms. In other words, one kernel in the application took too much time to compute

the required result. This could have been avoided by dividing the single invocation of

a filtering kernel into multiple kernel invocations, e.g. by using the offset parameter in

the clEnqueueNDRangeKernel call within the OpenCL implementation. Later this was

tested and the real execution time was measured to be in the same magnitude or slightly

slower than the original implementation.

Figure 20. The execution times using the modified filter profile.

5.7. Comparison to reference implementations

A comparison collage of filtering the first test image with all implementations is shown

in Figure 21. The collage shows that the images filtered with the original and OpenCL

implementations are nearly equal. The proposed implementations used unnormalized

for accessing the image data. Both of the GPGPU frameworks did not support texture

mirroring in the border areas of the images when the unnormalized access method was

used. Therefore the edge areas in the proposed results had some distortion compared

to the reference implementations. Complex edge handling logic was left out in the

GPGPU kernel codes with the cost of slightly worse PSNR values.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

512x512 960x1280 1920x1080 3840x2160

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Resolution (pixels)

Modified profile

Lebrun

Original

OpenCL

CUDA

Mobile CUDA

43

Figure 21. Filter implementation quality comparison using the original filter profile.

44

6. DISCUSSION

The first phenomenon to notice from the results is that in the case of small images, the

CPU computation is faster in general because of the overhead of parallel computing

and the benefits of a modern processor such as out-of-order processing. However with

bigger resolutions the overhead is compensated and the parallel processing starts to

add improvements to the performance with the modified profile. But with the original

profile the workload tends to be too data-intensive for a single thread as it was

discussed earlier in Section 5.6.

In general, the visual quality was slightly degraded by the modifications in the filter

profile. This was a compromise that had to be done to reduce the workload a single

thread had to compute. Alternatively a different approach for parallelizing the

algorithm as described in Section 4.2.1 could have been used, but it would have

produced other practical problems such as serialization of memory accesses and

memory requirement issues with intermediate result saving. But subjectively in some

cases where the noise was relatively small the image quality was still nearly the same

with the modified filter profile, e.g. in the fourth test case with natural noise.

Additionally, there were several occasions where the basic estimate had equal or

greater quality in terms of PSNR than the final Wiener filtered image. For practical

applications the need for the Wiener filtering step can therefore be questioned, since it

adds a lot of computation to the algorithm. While the Wiener filtering step produced

smoother and better images in most of the synthetic noise test cases, there were

occasions where some of the visual artifacts on solid surfaces were amplified by the

Wiener filter as shown in Figure 22. In these cases the basic filter estimate was more

pleasing for a human eye. As the original profile suggests, using a bigger 𝑁2 value in

the second filter step reduces this effect. Since the 𝑁2 values were the same in both

filtering steps in the modified filter profile, the second filtering step produced visually

worse results at times.

Figure 22. Close-up of the FHD image: basic estimate (left) and Wiener estimate

(right). The Wiener filter adds blockiness on solid surfaces and makes the

DCT basis artifacts more visible, but reduces small noise.

45

Especially in the 4K images in Figure 17 one can see a significant loss of contrast

in the filtered image when compared to the original image. This happens because the

added noise adds also energy to the image and a DC offset is added consequently. Both

the objective and subjective visual quality could most likely be improved by altering

the contrast or the dynamic range in the final image, for example by using histogram

equalization or some corresponding method.

It should be noted that color processing was not included in the implementations.

Adding two more color channels increases the computational requirements at least by

a factor of two. Therefore real-time image processing with high-quality BM3D

denoising is still not feasible with the processing units currently in use, especially on

mobile platforms.

6.1. Future development

Since the kernel code ended up having significant amount of instructions per thread,

dynamic parallelism might have been one good option worth trying to profile and

optimize the various subroutines in the code. However the hardware used in the tests

did not support such recursive programming model, where kernel launches can be

called inside other kernels. NVIDIA introduced dynamic parallelism in CUDA version

5.0 for GPUs having compute capability version 3.5 or higher. The same concept was

supported in OpenCL at version 2.0.

Mostly 32-bit floating-point units were used in the 3D transformation code. By

having support for 16-bit half-precision floating-point units on the hardware and

frameworks, the memory requirements could have been halved and to have greater

occupancy. The loss of precision would most likely have only a minor effect on the

final image quality, since the dynamic range in pixel values is not very wide. Also

using fixed-point number formats might have resulted in very different performance

measurements.

The presented implementations did not use the concept of unified memory. In

unified memory the memory areas on the host and the devices are merged together into

an area that is allocated and accessible on both systems. By using unified memory

some parts of the code could have been simplified and possibly accelerated.

The implementation by Lebrun uses integral images for measuring the patch

distances. In the integral images the pixel differences for each search window offset

are calculated beforehand into buffers, and then the patch difference can be calculated

with only four addition operations [36]. But because the integral images stored into

buffers require much memory and also the buffer values are cumulating and possibly

overflowing, using integral images is only feasible for small images where it could

improve the performance.

The BM3D algorithm requires scattering of computed results and normalizing them

with a weight map. By removing the scattering and writing only one result block in a

thread would be much more suitable for GPGPU computing, because it would also

eliminate the serialization of data write accesses.

46

7. CONCLUSION

The aim of this thesis was to study the field of image denoising and then implement a

state-of-the-art solution to use parallel processing in heterogeneous computing

platforms. In the study the basic theories of some of the well-known denoising

algorithms were described. BM3D algorithm implementations for both desktop and

mobile usage were created by using OpenCL and CUDA programming interfaces. The

presented implementations were evaluated with several test images having natural or

synthetic noise.

At the time of writing only two implementations of BM3D algorithm were publicly

available, the original design by Dabov et al. [1] and an implementation created using

C++ by Lebrun [34]. The source code for the original design was not available, and

therefore the presented implementations could not be fully compared. The

implementation by Lebrun uses OpenMP to parallelize the algorithm with CPU

threads. The presented implementations use a similar parallelization strategy than the

implementation by Lebrun but with GPGPU devices. However the parallelization of

the BM3D algorithm efficiently using GPGPU turned out to be challenging, and

multiple designs were considered. Main concerns were the serialization of data

accesses and the memory usage as a whole.

The results clearly showed that there is potential in using recent GPGPU

technologies in image denoising algorithms. Albeit the fact that the presented

implementations did not provide real improvements in performance when high quality

filtering parameters were used, there were notable speed-ups when using lower quality

parameters. The study showed that it is possible to outperform a desktop CPU with a

mobile GPU in performance of BM3D algorithm computation. For example, the

filtering of FullHD images was 1.5 times faster on a mobile GPU when a lower quality

filter profile was used. Also filtering 4K images in lower quality with a desktop GPU

using OpenCL was 7.5 times faster than filtering with a desktop CPU.

Despite the manufacturer efforts on development GPGPU tools they still lack some

key features and stability. For instance, several fatal crashes occurred while debugging

or even analyzing the OpenCL kernel code with the CodeXL development tools. To

the author’s knowledge a traditional profiling tool, where each function call inside the

kernel code is counted and the time spent is measured, was not available on any of the

development platforms used. Such tool would make it significantly easier to detect the

bottlenecks in algorithms and to optimize the code.

The current state-of-the-art denoising algorithm BM3D has hold its place well to

this day in terms of image quality. But new algorithms are still being researched and

developed and some implementations have already been shown to surpass BM3D in

PSNR measurements in some cases [25, 37]. It is also likely that some of these new

algorithms may be more suitable for GPGPU computing in terms of memory usage

and parallelization.

47

8. REFERENCES

[1] Dabov K., Foi A., Katkovnik V. & Egiazarian K. (2007) Image Denoising by

Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on

Image Processing, vol. 16, no. 8, pp. 2080-2095.

[2] Dabov K. (2010) Image and video restoration with nonlocal transform-domain

filtering. Publication 909. Tampere University of Technology.

[3] Owens J., Houston M., Luebke D., Green S., Stone J. & Phillips J. (2008) GPU

Computing. Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899.

[4] Carlos C. (2002) The Gap between Processor and Memory Speeds. Proc. Internal

Conference on Computer Architecture (ICCA).

[5] Kirk D. B. & Hwu W.-m. W. (2010) Programming Massively Parallel

Processors.

[6] Farber R. (2011) CUDA Application Design and Development.

[7] NVIDIA (2009) NVIDIA OpenCL Best Practices Guide.

[8] Woolley C. (2013) GPU Optimization Fundamentals. NVIDIA.

[9] Volkov V. (2010) Better performance at lower occupancy. URL:

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf.

[10] Khronos Group — The Khronos Group Inc. URL: https://www.khronos.org.

[11] Khronos OpenCL Working Group (2014) The OpenCL Specification.

[12] NVIDIA — Parallel Programming and Computing Platform. URL:

http://www.nvidia.com/object/cuda_home_new.html.

[13] Gonzalez R. C. & Woods R. E. (2002) Digital Image Processing (2nd Edition).

[14] Rudin L. I., Osher S. & Fatemi E. (1992) Nonlinear Total Variation Based Noise

Removal Algorithms. Phys. D, vol. 60, no. 1-4, pp. 259-268.

[15] Chambolle A. (2004) An Algorithm for Total Variation Minimization and

Applications. Journal of Mathematical Imaging and Vision, vol. 20, no. 1-2, pp.

89-97.

[16] Buades A., Coll B. & Morel J.-M. (2005) A non-local algorithm for image

denoising. Proc. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition.

48

[17] Buades A., Coll B. & Morel J.-M. (2006) The staircasing effect in neighborhood

filters and its solution. IEEE Transactions on Image Processing, vol. 15, no. 6,

pp. 1499-1505.

[18] Haar A. (1910) Zur Theorie der orthogonalen Funktionensysteme.

Mathematische Annalen, vol. 71, no. 1, pp. 38-53.

[19] Fino B.J. & Algazi V. (1976) Unified Matrix Treatment of the Fast Walsh-

Hadamard Transform. IEEE Transactions on Computers, vol. C-25, no. 11, pp.

1142-1146.

[20] Tran T. D. (2000) The BinDCT: Fast multiplierless approximation of the DCT.

IEEE Signal Processing Letters, vol. 7, no. 6, pp. 141-144.

[21] Arai Y., Agui T. & Nakajima M. (1988) A fast DCT-SQ scheme for images.

IEICE Transactions.

[22] Loeffler C., Ligtenberg A. & Moschytz G.S. (1989) Practical fast 1-D DCT

algorithms with 11 multiplications. Proc. International Conference on Acoustics,

Speech, and Signal Processing.

[23] Gonzalez R. C. (2004) Digital Image Processing Using MATLAB.

[24] Portilla J. & Simoncelli E. (2003) Image restoration using Gaussian scale

mixtures in the wavelet domain. Proc. International Conference on Image

Processing.

[25] Rajaei B. (2014) An Analysis and Improvement of the BLS-GSM Denoising

Method. Image Processing On Line, vol. 4, pp. 44-70.

[26] Andrews D. F. & Mallows C. L. (1974) Scale Mixtures of Normal Distributions.

[27] Elad M. & Aharon M. (2006) Image Denoising Via Sparse and Redundant

Representations Over Learned Dictionaries. IEEE Transactions on Image

Processing, vol. 15, no. 12, pp. 3736-3745.

[28] MacQueen J. (1967) Some methods for classification and analysis of

multivariate observations. Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, vol. 1, pp. 281-297.

[29] Pati Y., Rezaiifar R. & Krishnaprasad P. (1993) Orthogonal matching pursuit:

recursive function approximation with applications to wavelet decomposition.

Proc. Conference Record of The Twenty-Seventh Asilomar Conference on

Signals, Systems and Computers.

49

[30] Palma G., Comerci M., Alfano B., Cuomo S., De Michele P., Piccialli F. &

Borrelli P. (2013) 3D Non-Local Means denoising via multi-GPU. Proc.

Federated Conference on Computer Science and Information Systems

(FedCSIS).

[31] Goossens B., Luong H., Aelterman J., Pižurica A. & Philips W. (2010) A GPU-

Accelerated Real-Time NLMeans Algorithm for Denoising Color Video

Sequences. Advanced Concepts for Intelligent Vision Systems.

[32] Su Y. & Xu Z. (2010) Parallel Implementation of Wavelet-based Image

Denoising on Programmable PC-grade Graphics Hardware. Signal Processing,

vol. 90, no. 8, pp. 2396-2411.

[33] Sushchyk K. (2012) GPU-accelerated adaptive image denoising. Proc.

International Conference on Modern Problems of Radio Engineering

Telecommunications and Computer Science (TCSET).

[34] Lebrun M. (2012) An Analysis and Implementation of the BM3D Image

Denoising Method. Image Processing On Line.

[35] OpenMP ARB — OpenMP. URL: http://openmp.org.

[36] Facciolo G., Limare N. & Meinhardt-Llopis E. (2014) Integral Images for Block

Matching. Image Processing On Line, vol. 4, pp. 344-369.

[37] Lebrun M., Buades A. & Morel J.-M. (2013) Implementation of the "Non-Local

Bayes" (NL-Bayes) Image Denoising Algorithm. Image Processing On Line,

vol. 3, pp. 1-42.

