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ABSTRACT 

Noise reduction is one of the most fundamental digital image processing 

problems, and is often designed to be solved at an early stage of the image 

processing path. Noise appears on the images in many different ways, and it is 

inevitable. In general, various image processing algorithms perform better if 

their input is as error-free as possible. In order to keep the processing delays 

small in different computing platforms, it is important that the noise reduction is 

performed swiftly. 

The recent progress in the entertainment industry has led to major 

improvements in the computing capabilities of graphics cards. Today, graphics 

circuits consist of several hundreds or even thousands of computing units. Using 

these computing units for general-purpose computation is possible with OpenCL 

and CUDA programming interfaces. In applications where the processed data is 

relatively independent, using parallel computing units may increase the 

performance significantly. Graphics chips enabled with general-purpose 

computation capabilities are becoming more common also in mobile devices. In 

addition, photography has never been as popular as it is nowadays by using 

mobile devices. 

This thesis aims to implement the calculation of the state-of-the-art technology 

used in noise reduction, block-matching and three-dimensional filtering (BM3D), 

to be executed in heterogeneous computing environments. This study evaluates 

the performance of the presented implementations by making comparisons with 

existing implementations. The presented implementations achieve significant 

benefits from the use of parallel computing devices. At the same time the 

comparisons illustrate general problems in the utilization of using massively 

parallel processing for the calculation of complex imaging algorithms. 
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TIIVISTELMÄ 

Kohinanpoisto on yksi keskeisimmistä digitaaliseen kuvankäsittelyyn liittyvistä 

ongelmista, joka useimmiten pyritään ratkaisemaan jo signaalinkäsittelyvuon 

varhaisessa vaiheessa. Kohinaa ilmestyy kuviin monella eri tavalla ja sen 

esiintyminen on väistämätöntä. Useat kuvankäsittelyalgoritmit toimivat 

paremmin, jos niiden syöte on valmiiksi mahdollisimman virheetöntä 

käsiteltäväksi. Jotta kuvankäsittelyviiveet pysyisivät pieninä eri laskenta-

alustoilla, on tärkeää että myös kohinanpoisto suoritetaan nopeasti. 

Viihdeteollisuuden kehityksen myötä näytönohjaimien laskentateho on 

moninkertaistunut. Nykyisin näytönohjainpiirit koostuvat useista sadoista tai 

jopa tuhansista laskentayksiköistä. Näiden laskentayksiköiden käyttäminen 

yleiskäyttöiseen laskentaan on mahdollista OpenCL- ja CUDA-

ohjelmointirajapinnoilla. Rinnakkaislaskenta usealla laskentayksiköllä 

mahdollistaa suuria suorituskyvyn parannuksia käyttökohteissa, joissa 

käsiteltävä tieto on toisistaan riippumatonta tai löyhästi riippuvaista. 

Näytönohjainpiirien käyttö yleisessä laskennassa on yleistymässä myös 

mobiililaitteissa. Lisäksi valokuvaaminen on nykypäivänä suosituinta juuri 

mobiililaitteilla. 

Tämä diplomityö pyrkii selvittämään viimeisimmän kohinanpoistoon 

käytettävän tekniikan, lohkonsovitus ja kolmiulotteinen suodatus (block-

matching and three-dimensional filtering, BM3D), laskennan toteuttamista 

heterogeenisissä laskentaympäristöissä. Työssä arvioidaan esiteltyjen toteutusten 

suorituskykyä tekemällä vertailuja jo olemassa oleviin toteutuksiin. Esitellyt 

toteutukset saavuttavat merkittäviä hyötyjä rinnakkaislaskennan käyttämisestä. 

Samalla vertailuissa havainnollistetaan yleisiä ongelmakohtia 

näytönohjainlaskennan hyödyntämisessä monimutkaisten 

kuvankäsittelyalgoritmien laskentaan. 

 

Avainsanat: kuvanparannus, näytönohjainlaskenta, Wiener-suodatus 
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1. INTRODUCTION 
 

Noise reduction a.k.a. image denoising is an old problem in the field of image 

processing. Albeit it has been studied for decades it is still a valid challenge and the 

theoretical limits of restoration are unknown. The state-of-the-art method BM3D 

invented by Dabov et al. [1] provides very good results in terms of visual image 

quality, but the complexity and the requirements of the algorithm add several 

limitations to its usage. Yet image denoising is a required step in many image 

processing applications and is often placed near the raw Bayer output in the processing 

pipeline to provide a cleaner signal for further processing steps to work with. However 

camera systems in different platforms nowadays are required to be quickly operated 

and including a modern image denoising implementation in the pipeline might add up 

too much latency. Therefore computational speed of denoising algorithms needs to be 

considered. 

Digital images that are captured with analog sensors always contain digital noise of 

some magnitude. Especially pictures taken in low-light conditions have usually much 

of clearly visual noise that might ruin the image scenery. The noise is primarily caused 

by the thermal changes in the electronic circuits combined with the amplification of 

the sensor cells. Additionally, there is photon shot noise where randomly distributed 

photons are not shared equally to pixels in the receiving sensor. Therefore the exposure 

time relates inversely to the amount of noise; more light, less noise. [2] 

Generally noisy images are modeled as 

 

 𝑧(𝑥) = 𝑦(𝑥) +  𝜂(𝑥),    𝑥 ∈ 𝑋 (1) 

 

where 𝑋 is the area of the image, 𝑧(𝑥) is the denoised signal, 𝑦(𝑥) is the original 

noiseless signal and 𝜂(𝑥) is the average white Gaussian noise affecting the original 

signal. Although there exist various types of noise, AWGN is the one that is typically 

modeled in denoising algorithms. Traditionally the quality of a denoising filter has 

been measured with the peak signal-to-noise ratio value. The PSNR is defined as the 

ratio between maximum possible pixel value and the mean squared error in the image 

presented usually in logarithmic decibel scale. [2] 

A naïve solution to reduce AWGN in an image would be to filter it with a Gaussian 

blur point spread function. This type of filtering can be applied fast and can actually 

work well with high resolution images where the noise is small in size compared to 

the preservable details in the image. However in most cases the result is a blurred 

image with no sharp edges and small details visible, but still with blended noise 

artifacts. 

A better solution is to exploit the characteristics of natural images. Most pictures 

taken are relatively sparse and mainly consist of smooth surfaces with sharp edges. 

Thus most of the information is contained in the lower frequencies and the data in 

higher frequencies denote the edges and small details. Natural images contain also a 

lot of local self-similarities, where similar patterns in image subsets can be found and 

matched together. The idea is to compare two or more similar patches of data and 

collaboratively filter the differing noise out. 

The recent achievements in the field of heterogeneous computing opens up many 

opportunities in image processing. The current GPGPU platforms such as CUDA and 

OpenCL make it possible to use the massive concurrent processing power of GPUs for 

general-purpose computing. A top level view illustrating the parallel capacity in GPUs 
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is shown in Figure 1. This is very appealing for image processing since most 

algorithms or at least parts of them can be designed and implemented in parallel 

format. 

 

 

Figure 1. Top level hardware view of a modern PC’s computational resources. 

 

This thesis presents an implementation of the BM3D image denoising algorithm by 

utilizing modern parallel processing technologies provided by recent GPGPU devices 

and the OpenCL framework. The developed solution outperforms the available 

implementations in terms of processing speed and is competitive in denoising quality 

accuracy. The aim is to explore the possibilities of harnessing the parallel computing 

power of GPU devices to image processing advantages. 
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2. HETEROGENEOUS COMPUTING WITH OPENCL AND 

CUDA 
 

In this chapter graphics processing units and their interfaces to general-purpose 

computing are discussed. In Section 2.1 the evolvement and general information of 

heterogeneous system architectures are presented, and in Section 2.2 GPU computing 

and the common issues in developing a GPGPU program are discussed. The Sections 

2.3 and 2.4 present brief details about commonly used GPGPU frameworks OpenCL 

and CUDA. 

2.1. Background and motivation 

Traditionally to improve computational performances in computers the clock rates 

have been increased. However nowadays this strategy has faced its physical limits and 

is not feasible anymore. Other solutions to gain more performance are needed to speed 

up the computers. One of these solutions has been the development of superscalar 

processors that exploit various techniques of improving instruction-level parallelism 

within a single computational unit. On the hardware level this is known as dynamic 

parallelism, where the processing unit can, for example, analyze and execute the 

instructions out-of-order when applicable. On the software level, ILP is known as static 

parallelism, i.e. where the compilers pipeline the instructions in more efficient order. 

Another solution is to utilize more parallelization with data parallelism, where 

independent data items can be processed separately in different computational units. 

This can be achieved with code vectorization, namely with SIMD (single instruction, 

multiple data) instructions, where multiple data items are processed with the same 

operation simultaneously in parallel. The downside compared to instruction-level 

parallelism is that this cannot be done transparently; to run code in parallel processing 

units the code usually needs to be rewritten in parallel format. 

In the 90s and early 2000s graphics accelerators were evolving mainly for gaming 

and multimedia purposes. But after the coming of programmable shaders researchers 

saw the opportunity of harnessing the computing power of all the GPU cores available 

for general-purpose computation. However the use of graphics libraries, such as 

OpenGL and DirectX, for GPGPU computation was tricky and hard to adopt in most 

of the software. Fortunately several parallel computing solutions emerged later from 

the need of cheap performance alongside easy access to the compute capabilities on 

external parallel compute units. NVIDIA’s CUDA platform and the Khronos Group’s 

open standard OpenCL are the two most well-known solutions to create parallel 

computing applications. Other competing frameworks exist also, namely RenderScript 

developed by Google and Microsoft’s DirectCompute. 

According to various online sources mobile games market is on the rise 

internationally and the graphics quality requirements are more demanding along. In 

addition, customer feedbacks on mobile specifications show that having good camera 

features on a smartphone is one of the most valued selling characteristics. Therefore 

performance boost enablers such as GPGPU frameworks are highly welcomed also on 

mobile platforms. Luckily most of the existing heterogeneous computing platforms 

used in both desktop and server computing are applicable for mobile usage. Most 

concerning difference is the power consumption, which is highly limited on mobile 

platforms. 
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2.2. GPGPU computing 

Graphics processing units are massively parallel devices, which enable many 

opportunities to gain significant performance improvements in most of 

computationally expensive programs. Originally GPUs were developed solely to 

accelerate graphics rendering in games and 3D processing applications but these days 

they are considered to be more generalized parallel processing units. In high level a 

GPU nowadays consists of numerous streaming multiprocessors, thread execution 

controllers and memory partitions [3]. 

The execution of multiple parallel threads on a GPU are designed to be run in 

groups. These groups can vary in size, but there is a fixed size limit in the streaming 

multiprocessors how many threads can be executed simultaneously in a group. 

Therefore it is beneficial to use thread group sizes that are divisible by this limit. 

NVIDIA and AMD use the terms warp and wavefront respectively to describe this 

limit of parallel thread execution in a processor. 

Typically programs are either limited arithmetically or by memory bandwidth. 

Arithmetically limited programs use more time computing the output of an algorithm 

compared to moving data between different memories during calculations, and 

bandwidth-limited is the opposite. This is described with the term arithmetic intensity, 

i.e. number of operations per memory-word transferred. Nowadays the processing 

hardware is mostly memory bandwidth-limited, because the development on memory 

access latencies has been slower than the development on arithmetic processing unit 

speeds [4]. Therefore optimizing the memory accesses should be the primary concern 

in algorithm design, especially in GPU computing since there is usually a lot of data 

exchange between host and GPU device memories. 

2.2.1. GPU memory types 

To hide high memory access latencies multiple arithmetic operations can be scheduled 

during the access time, where the data is independent of the queried memory data. 

However when there are data dependencies the arithmetic units will be stalled. To 

compensate this and improve arithmetic intensity there are various types of memory 

included on GPU architectures. 

 

Registers 

 

Registers are banks of memory dynamically partitioned in a register file, which is an 

on-chip memory that has minimum amount of access latency on a GPU. Each 

multiprocessor has one register file with a fixed size, e.g. 256 KB per multiprocessor 

on NVIDIA’s Kepler architecture. Registers are allocated and assigned to threads and 

each register memory slot is accessible by only a single thread at a time. Because 

amount of registers available is limited they are mainly used for storing local variables 

in functions. Local variables that cannot fit in the registers are spilled to larger but 

slower memories. [5] 

 

Shared memory and L1 cache 

 

Another type of fast on-chip memory available on a GPU is the shared memory. This 

memory has two purposes in the Kepler architecture and is divided into two partitions: 
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L1 cache and shared memory. These partition sizes are configurable in CUDA. The 

L1 cache partition might not be available on all modern GPU platforms, but the shared 

memory is most likely. The main objective of this memory is to reduce the amount of 

memory access transactions between on- and off-chip memories. It is also shared 

amongst the thread groups executing in the same streaming multiprocessor, and 

therefore the memory can be used for inter-thread communication within a thread 

group. Typically data that is required by multiple threads simultaneously is cached in 

shared memory, e.g. data with dependency on neighborhood or sequential reads of 

independent data. The L1 cache behaves as an LRU cache and is designed for spatial 

reuse of data, not for temporal [6]. 

 

L2 cache 

 

As with the L1 cache, L2 works also as an automatic LRU cache. This memory caches 

accesses to the global memory and is shared amongst all the streaming 

multiprocessors. The main objective of the cache is to avoid having the bottleneck on 

global memory bandwidth. 

 

Constant memory 
 

The read-only constant memory is for storing constant variables used by multiple 

threads. This memory is usually located off-chip but is cached on-chip to reduce 

memory transactions. 

 

Global memory 

 

The slowest memory type on a GPU is the global memory. The off-chip global 

memory has high access latency compared to on-chip memories but offers a lot more 

capacity, which is nowadays in gigabyte magnitude. The access latency is several 

hundreds of clock cycles and is therefore about ten times slower than on-chip 

memories. 

Sometimes parts of global memory are addressed as local memory. This memory is 

local in scope of a thread, i.e. only accessible by a single thread, and the purpose is to 

extend threads’ available local memory. It should not to be confused with OpenCL 

terminology of local memory, which means the same as the shared memory described 

earlier. More of these differences in terminology can be seen in Table 1 below. 

 

Table 1. Terminology differences between OpenCL and CUDA. 

OpenCL CUDA 

Compute unit Multiprocessor 

Processing element CUDA core 

Work-item Thread 

Work-group Block 

NDRange Grid 

Private memory Local memory 

Local memory Shared memory 

Local ID Thread ID 

Global ID Block ID ∗ Block size + Thread ID 
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Texture memory 

 

Texture memory is an off-chip memory which has a special purpose of storing texture 

images. Likewise to constant memory, texture memory is also cached on-chip. Images 

are saved into this memory by taking advantage of spatial locality. Also several 

hardware benefits are often designed for this memory such as automatic normalization 

and image boundary handling. 

2.2.2. Accessing GPU memories 

Generally GPU architectures are structured to access several memory banks 

simultaneously. To take advantage of the full potential of a GPU unit’s memory 

bandwidths, all memory accesses should be done in a coalesced and aligned manner 

since memory locations are divided into fixed-size segments. This allows multiple 

memory addresses in a segment to be bundled and available via a single load or store 

transaction. Examples of aligned sequential and non-sequential accesses are shown in 

Figure 2. 

 

 

Figure 2. Efficient memory access patterns. 

 

Non-sequential access patterns inside a segment have no degrading impact on 

performance, since the banks accessed reside in the same memory transaction as in 

sequential. However access patterns with offset or strides will most likely result in 

multiple transactions needed to perform the data exchanges. These inefficient 
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behaviors are illustrated in Figure 3, where more than one transaction are needed to 

transfer the data. [7] 

The shared memory is also divided into memory banks which are equally sized areas 

in the memory that can be accessed simultaneously. The rules for simultaneous 

accesses and efficient bandwidth usage vary between different devices. Generally if 

any of the banks have multiple threads accessing to it at the same time, a conflict will 

occur and the requests will be serialized. However NVIDIA’s recent technology allows 

concurrent access from multiple threads to different words in the same shared memory 

bank [8]. 

 

 

Figure 3. Performance degrading memory access patterns. 

2.2.3. Occupancy 

Occupancy is defined as the amount of parallel threads divided by the maximum 

amount of parallel threads in a GPU. Therefore occupancy is a measure of thread-level 

parallelism. Another contributing factor to computational performance is instruction-

level parallelism which is a measure of how many operations a multiprocessor can 

perform simultaneously. 

A common pitfall in hiding memory access latencies is to try raising the occupancy 

by increasing the amount of threads and thread blocks in parallel execution, but 

according to Volkov [9] it might be more useful to lower occupancy to gain better 

throughput with instruction-level parallelism. This is because when less threads are 

used, more registers are possibly available for a single thread to use and the data in 



 

 

15 

process will not spill to slower memories. Commonly the on-chip shared memory is 

considered to be as fast as the registers but this is a misconception because the 

maximum bandwidth available in register transfers is about six times greater than in 

shared memory. 

2.2.4. Branch divergences 

Since GPUs use mainly data parallelism, efficient use of GPU resources require that 

all concurrent threads follow the same execution paths. Conditional clauses in the code 

do not conform to this requirement, and using them should be kept to minimum. When 

there is a condition in the code, part of the threads need to stall while other threads 

continue executing the branch. This may result in significant performance losses. [7] 

One possible strategy to minimize the performance penalties of branch divergences is 

to use branch predication, where the use of jump instructions is replaced with predicate 

logic. The output of both branches are computed, and only after that a decision is made 

which output to use. This technique may increase the amount of instructions in the 

code but can be more effective in pipelined execution. Example code of branch 

predication is shown in Listing 1. 

 

Listing 1. Code sample of branch predication. 

// Without predication 

 

if (condition) x = y; 

else x = z; 

// With branch predication 

 

pred = -(condition); 

x = (pred & (y)) | ((~pred) & z); 

2.3. OpenCL standard 

OpenCL aims to bring parallelization to another level by mixing different 

computational units together under same standard to be usable with a single application 

programming interface. Originally developed by Apple Inc., OpenCL is currently 

overseen by Khronos Group, a nonprofit industry consortium for creating open 

standards for graphics, rich media and parallel computation [10]. The OpenCL 

platform model is shown below in Figure 4. 

 

 

Figure 4. Platform model of OpenCL framework. 
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The execution model of the OpenCL requires that the problem to solve with the 

framework should have some dimensionality, which may be up to three dimensions. 

The division of the workload can be seen in Figure 5. Each work-item is uniquely 

indexed globally and intended to be processed by one kernel invocation, and multiple 

work-items are grouped and processed simultaneously in warp or wavefront -sized 

batches inside compute units. A work-item is an abstract concept and can be defined 

according to the algorithm and data requirements in question. OpenCL kernels are 

executed in SPMD style so that many kernel instances of a single kernel process the 

varying data of work-items in parallel in multiple processing elements. Different 

kernel runs are queued and run sequentially. Before running the kernels they are 

compiled in runtime. [11] 

 

Figure 5. N-dimensional presentation of work-groups and -items. 

 

The memory model in OpenCL follows the available memories in GPUs closely. 

There are some differences in terms used to describe memory regions, e.g. local 

memory equals shared memory. A brief illustration of the memory model can be seen 

in Figure 6. [11] 

2.4. CUDA 

NVIDIA introduced CUDA to the industry in 2006, and it was the first available 

GPGPU framework [12]. It defines a new programming language for NVIDIA’s GPUs 

which extends the C language standard with data-parallel constructs. Currently CUDA 
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is not compliant for overall heterogeneous computing, because it is designed to work 

only on NVIDIA’s GPU devices. 

The CUDA and OpenCL bear many similarities to each other. Both are implemented 

and used with a variation of C language, threads are processed in groups and the 

memory models are very similar. However fundamental differences exist in the target 

platform design, where OpenCL is truly open heterogeneous solution for general-

purpose parallel programming across various devices and CUDA is mainly designed 

for proprietary NVIDIA devices. 

The CUDA is designed as a scalar architecture, and because NVIDIA’s OpenCL 

implementation depends on the CUDA architecture, the vector data types specified in 

the OpenCL specification are mostly not useful in terms of performance on NVIDIA 

GPUs. However using the vector data types can add more portability and convenience 

to the code and their usage may therefore be justified when developing using NVIDIA 

cards. 

At the time of writing the tools are arguably more mature in CUDA SDKs. Albeit 

NVIDIA GPUs do support OpenCL, the company does not provide principal 

debugging tools for the framework. 

 

 

Figure 6. Memory model used in OpenCL. 
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3. DENOISING ALGORITHMS 
 

In this chapter the most common existing image denoising algorithms are discussed. 

The algorithms are split into two categories: spatial- and transform-domain filters. In 

Section 3.1 spatial-domain denoising filtering is studied, and in Section 3.2 transform-

domain denoising filters are examined. Section 3.3 describes briefly the K-SVD 

dictionary learning denoising method, and Section 3.4 is reserved for the main topic 

BM3D algorithm solely. A summary of the shown algorithms is shortly presented in 

Section 3.5. 

3.1. Spatial-domain filtering 

Direct operations on the pixels of an image is described with the term spatial-domain 

filtering. Usually a convolution operation is used on the original image in denoising 

algorithms. The convolution between the original image 𝑓 and the filter impulse 

response or “mask” 𝑤 can be presented as 

 

 

𝑓′(𝑥, 𝑦) = (𝑤 ∗ 𝑓)(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

, (2) 

 

where 𝑓′ is the filtered image, 𝑥 and 𝑦 image coordinates, 𝑎 and 𝑏 the horizontal and 

vertical sizes of the filter mask and 𝑠 and 𝑡 the indices of the filter mask. This however 

results in a horizontally and vertically mirrored output image. The mirroring can be 

corrected by using correlation instead, where the coefficients are mirrored pre-

emptively as follows 

 

 

𝑔(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

. (3) 

 

In general denoising operations can be considered as a blurring or smoothing 

operations where the highly dense AWGN is averaged out. The challenge is to preserve 

the small details and sharp object edges in the noise reduction process. One example 

of a smoothing operation is to calculate the moving average for the image. This can be 

done with the convolution or correlation Equations 2 or 3 above as 

 

 
𝑔(𝑥, 𝑦) =

∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎

∑ ∑ 𝑤(𝑠, 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎

 (4) 

 

with the coefficients being weighted as, for example, 

 

 
𝑤 = ( 

1 2 1
2 4 2
1 2 1

 ) . (5) 

 

Since the coefficients are symmetrical in the averaging filter, either convolution or 

correlation can be used. A small averaging filter mask is very simple to implement and 
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can do decent denoising on very large images where the noise is relatively small-sized 

compared to the details on the image. [13] 

3.1.1. Total variation 

In 1992, Rudin et al. presented the original concept of total variation based noise 

removal algorithms [14]. The main objective is to restore the signal by minimizing the 

total variation norm of the estimated solution. This can be described as a differential 

equation optimization problem as follows: 

 

 

min
𝑥

{𝐹(𝑥) =
1

2
∑(𝑦(𝑛) − 𝑥(𝑛))

2
𝑁−1

𝑛=0

+ 𝜆 ∑|𝑥(𝑛) − 𝑥(𝑛 − 1)|

𝑁−1

𝑛=1

}, (6) 

 

where 𝑦 is the noisy input signal, 𝑥 is the estimated denoised signal, 𝑁 is the amount 

of samples, and the second term defines the actual total variation. 𝜆 is a regularization 

parameter which alters the amount of total variation in the result. With 𝜆 = 0 the 

output remains unchanged compared to the input. The first term is a measure of 

distance as a sum of squared differences to deduce the sample’s closeness after TV 

reduction. Likewise to other denoising methods the closeness is used to keep the edges 

sharp in the noise reduction. 

Since the concept defines an optimization problem which requires solving a 

differential equation, multiple algorithms have been developed to overcome this. One 

of the more modern solutions for 2D image denoising is Chambolle’s algorithm [15]. 

TVD algorithms have been surpassed by newer methods like NL-means and BM3D, 

but are still included in this thesis for more complete comparison. 

3.1.2. Neighborhood filters 

All image denoising filters that are designed to restore a pixel by averaging its 

neighboring similar gray level pixels are considered as neighborhood filters. These 

filters are generally considered to be of the form 

 

 
𝑓 =

∑ 𝑤𝑖,𝑗𝑦𝑗𝑗∈Ω

∑ 𝑤𝑖,𝑘𝑘∈Ω
, (7) 

 

where Ω is the area of the input image, and the estimated image 𝑓 is a weighted average 

of the noisy image 𝑦 and the weights 𝑤 may depend on values of 𝑦. 

Buades et al. present Yaroslavsky, SUSAN and Bilateral filters briefly in their 

research on developing the NL-means algorithm [16, 17]. According to these 

published papers these filters do not differ significantly in practice. Typically these 

filters do not blur the edges due to the fact that pixels are averaged based on the 

reference pixel’s region. However since the pixel gray levels are individually 

compared the results are very vulnerable to noise in single pixels. Also these methods 

may generate artificial shocks in the output images. 
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3.1.3. Non-local means 

Non-local means is one of the most successful denoising methods available in spatial-

domain filters. In contrast to neighborhood filters, the algorithm takes into account not 

only the neighboring pixels of a reference pixel but compares non-local patches of 

pixels to each other. Patches are fixed-size, e.g. 3x3, 5x5, 7x7, etc. Non-locality of the 

algorithm comes from the fact that the patches can in theory locate anywhere in the 

image. In practice, the patch locations are limited inside a fixed-size search window to 

reduce computation. Euclidean distances between patches are measured and each 

output pixel is a sum of weighted averages, where the weights come from the patch 

distances in the neighborhood of the reference patch. Larger weights are given to pixels 

with a similar intensity neighborhood, i.e. patches that are similar to the reference 

patch. [16] 

The discrete form of the NL-means algorithm to estimate a pixel value 𝑁𝐿[𝑣](𝑖) at 

location 𝑖 is 

 

 
𝑁𝐿[𝑣](𝑖) =

1

𝑍(𝑖)
∑ 𝑤(𝑖, 𝑗)𝑣(𝑗)

𝑗∈Ω

, (8) 

 

where Ω is the area of the original noisy image, 𝑖 and 𝑗 two pixel locations in the image 

and 𝑣(𝑖) is the unfiltered pixel value at 𝑖. The normalizing factor 𝑍(𝑖) is given by: 

 

 𝑍(𝑖) = ∑ 𝑤(𝑖, 𝑗)

𝑗∈Ω

, (9) 

 

and 𝑤(𝑖, 𝑗) is the weighting function which can vary in applications. Usually a 

Gaussian weighting function is used: 

 

 

𝑤(𝑖, 𝑗) = 𝑒
−

𝐹∗|𝑣(𝒩𝑖)−𝑣(𝒩𝑗)|
2

ℎ2 , 
(10) 

 

where 𝒩𝑘 denotes a fixed-size square neighborhood centered at pixel k and h is a 

degree of filtering parameter. The function essentially calculates the Euclidean 

distances between patches by taking sums of squared differences of them and 

weighting the distances with Gaussian distribution. Symbol 𝐹 denotes a weight 

function for SSD calculation which usually is a box function or another Gaussian 

function. With 𝐹 being a Gaussian function it is possible to weight the distances to be 

focused on the pixels near center of a patch, while the box function weights simply 1 

for all pixels inside a patch and 0 for the rest. [16] 

3.2. Transform-domain filtering 

In Section 3.1 we looked at typical denoising methods in spatial-domain, how they 

access and change data based on the actual pixel values. But some information can be 

more easily and efficiently manipulated in the frequency domain, where the image data 

is decomposed into its frequency components, e.g. to a sum of cosine functions. There 

are several options to choose the transform method from, and different methods vary 
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in computational complexities and output characteristics. Generally these transform 

methods are split into two categories: wavelet and Fourier transform based methods. 

According to the Fourier theorem [13] the convolution operation used in spatial-

domain is equal to single multiplication operation in transform-domain. This means 

that convolution in Equation 2 can be rewritten as 

 

 𝑓′ = 𝑤 ∗ 𝑓 = 𝑊 ∙ 𝐹, (11) 

 

where 𝑊 and 𝐹 are the transform-domain representations of the filter mask and 

original image. The multiplication in transform-domain is computationally 

significantly less complex than the convolution operation in spatial-domain, which 

often leads to faster algorithm implementations, although the transformation back and 

forth spatial to transform-domain adds overhead to the processes. Therefore a lot of 

research has been done in the field of frequency-domain transformations. There are 

multiple algorithms for both wavelet and Fourier transforms available. Currently some 

of the fastest DWT methods are Haar [18] and Walsh-Hadamard [19] transforms. 

Some of the fastest DCT methods are BinDCT [20], AAN DCT [21] and Loeffler’s 

DCT [22]. 

3.2.1. Wiener filter 

One of the earliest known image restoration strategies is to use a Wiener filter. The 

filter produces an output which minimizes the statistical error based on a cost function. 

Usually mean squared error is used as a cost function: 

 

 𝑒2 = 𝐸 {(𝑓 − 𝑓)
2
}, (12) 

 

where 𝑓 is the original signal and 𝑓 is the estimate of the original signal after filtering, 

and 𝐸 denotes the expectation. The task is to find the coefficients that provide the 

output up to the expectation. The filter can be presented for images in transform-

domain as 

 

 

𝐹̂(𝑢, 𝑣) =

[
 
 
 

1

𝐻(𝑢, 𝑣)

|𝐻(𝑢, 𝑣)|2

|𝐻(𝑢, 𝑣)|2 +
𝑆𝜂(𝑢, 𝑣)

𝑆𝑓(𝑢, 𝑣)⁄
]
 
 
 

𝐺(𝑢, 𝑣), (13) 

 

in which 𝐹̂(𝑢, 𝑣) is the estimated original signal and 𝐺(𝑢, 𝑣) is the observed noisy 

signal in transform-domain, 𝐻(𝑢, 𝑣) is the PSF (point spread function) used, and 𝑆𝑘 is 

the power spectral density of a signal. The ratio of power spectral densities is the 

inverse of the signal-to-noise ratio, and is most likely unknown. The ratio can be 

replaced with some constant value 𝑅, which can be evaluated empirically in the 

filtering process. [23] 

Because the Wiener filter is about minimizing the effect of a cost function and is not 

very complex to implement, it is also widely used within other image restoration 

algorithms. Some examples of these algorithms can be seen in the next sections. 
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3.2.2. BLS-GSM 

BLS-GSM, proposed by Portilla et al. in 2003, is a modern image denoising method 

that utilizes wavelets. Its basic idea is to model the original image properties of each 

neighborhood in a noisy image in wavelet domain using a mixture of scaled Gaussians 

(GSM), and then estimate the reference image coefficients by computing the Bayes 

least squares (BLS) estimates. The final solution is a weighted sum of local Wiener 

estimates of each neighborhood produced from covariance matrices of known noise 

and observed neighborhoods. [24, 25] 

The Gaussian scale mixture is used to model the wavelet pyramid coefficients, and 

is defined as 

 

 𝑥 = √𝑧𝐮, (14) 

 

where 𝑧 is an independent positive scalar random variable and 𝐮 is a zero-mean 

Gaussian vector [26]. The square root of 𝑧 is used to simplify the expressions in further 

equations. The model can be applied to the noisy image model as 

 

 𝑦 = 𝑥 + 𝜂 = √𝑧𝑢 +  𝜂. (15) 

 

The BLS estimation is calculated as 

 

 
𝐸{𝑥|𝐲} = ∫ 𝑝(𝑧|𝐲)𝐸{𝑥|𝐲, 𝑧}𝑑𝑧

∞

0

, (16) 

 

which essentially is a 𝑝(𝑧|𝐲) weighted sum of 𝐸{𝑥|𝐲, 𝑧} local Wiener estimates, where 

 

 
𝐸{𝑥|𝐲, 𝑧} =

𝑧𝐂𝑢

𝑧𝐂𝑢 + 𝐂𝜂
𝐲. (17) 

 

The variables 𝐂𝑢 and 𝐂𝜂 denote the covariance matrices computed from the observed 

and known noise neighborhoods. [24, 25] 

3.3. K-SVD 

Some denoising methods are based on machine learning. K-SVD algorithm is one of 

the existing dictionary learning algorithms that has been applied successfully to image 

denoising. The goal is to be able to reconstruct a signal by using a sparse representation 

of the signal over an overcomplete set of basis (the dictionary), and to learn from the 

provided data and add the learnings to the dictionary. To have results the dictionary 

needs to be initialized with some basis to begin with, e.g. basis of DCT or a training 

set from a database. [27] 

K-SVD algorithm is essentially a generalization of k-means [28] clustering 

algorithm. The denoising algorithm has two stages: sparse coding stage and dictionary 

update stage. In the sparse coding stage an approximated solution for the sparse 

representation of the signal is solved from the NP-hard problem 
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 min
α

‖α‖0
0  s. t. ‖𝐃α − y‖2

2 ≤ (𝐶𝜎)2, (18) 

 

by using a pursuit algorithm, e.g. OMP [29]. The symbol α denotes the sparse 

representation vector, 𝐃 the dictionary, 𝑦 the noisy image and 𝐶 the noise gain. 

In the dictionary update stage the contents of the atoms in the dictionary are re-

evaluated. For each atom that is active, a set of patches from α is collected and used to 

compute the error in representation: 

 

 𝐞𝑖𝑗
𝑙 = y𝑖𝑗 − ∑ 𝐝𝑚α𝑖𝑗(𝑚)

𝑚≠𝑙

, (19) 

 

where 𝐄𝑙 is the error matrix with columns 𝐞𝑖𝑗
𝑙  and 𝐝𝑚 an atom in the dictionary. 

Singular value decomposition (SVD) is then applied to the error matrix 𝐄𝑙 and the 

atom values are updated with the resulting coefficient values. [27] 

3.4. BM3D algorithm 

In this section the main topic of this thesis, BM3D algorithm [1], is studied. The BM3D 

algorithm combines the best of both spatial- and transform-domain methods. Likewise 

to NL-means algorithm, BM3D utilizes also patch distances to gather similar pixel 

groups together to reveal self-similarities of the patches under the noise. This patch 

comparison is called block-matching, where the name of the algorithm also refers to. 

The “3D” part of the name comes from stacking the matching blocks into a 3-

dimensional image to be able to use collaborative filtering on them. This collaborative 

filtering reveals the finest details shared by the blocks while keeping the unique 

features of individual blocks mostly untouched. [1, 2] 

There are multiple variations and extensions to the algorithm for different 

applications. The basic algorithm named BM3D is mainly for processing grayscale 

still images. Other algorithms are listed below: 

 

 C-BM3D – a color extension to the basic algorithm, 

 V-BM3D – an extension for grayscale video processing, 

 BM3D-SH2D and BM3D-SH3D – a variation to sharpen an image using 

BM3D filter, 

 BM3D for deblurring – a variation to use BM3D for deblurring an image, 

 SA-BM3D – a variation with shape-adaptive grouping via block-matching, 

 BM3D-SAPCA – a variation using shape-adaptive principal component 

analysis. [2] 

3.4.1. Structure 

The algorithm is divided into two major steps as shown in Figure 7. The first step 

focuses on producing an image which has significantly less noise than the noisy image. 

This image is a basic estimate of the original noiseless image. In the second step the 

basic estimate is used as a block-matching base for empirical Wiener filtering. 

According to Dabov, this second step has been empirically confirmed to improve the 

image quality compared to the first step output [2]. 
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Figure 7. High-level flowchart of the BM3D algorithm. 

3.4.2. Block-matching 

The grouping of the blocks is realized by block-matching. Blocks that have high 

similarity with the reference block are considered for a group. The similarity is 

measured with a distance function 

 

 

𝑑noisy(𝑍𝑥𝑅
, 𝑍𝑥) =

‖𝑍𝑥𝑅
− 𝑍𝑥‖2

2

(𝑁1
ht)

2 , (20) 

 

where 𝑥 is a 2D coordinate in the noisy image, 𝑥𝑅 the coordinate of the reference block, 

𝑁1
ht the length of a side of a square block and 𝑍𝑘 a noisy fixed-size block located at 
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coordinate 𝑘. The distance is effectively measured as sums of squared differences 

between blocks. 

According to Dabov et al. [1] the distance function presented in Equation 20 

produces good results when the standard deviation 𝜎 is low and the size 𝑁1
ht is not too 

small, but with high 𝜎 or small 𝑁1
ht the probability densities of distances can overlap 

heavily. Thus to avoid this problem the block-matching can also be done in transform-

domain with thresholded coefficients: 

 

 

𝑑(𝑍𝑥𝑅
, 𝑍𝑥) =

‖Υ´ (𝒯2D
ht(𝑍𝑥𝑅

)) − Υ´ (𝒯2D
ht(𝑍𝑥))‖

2

2

(𝑁1
ht)

2 , (21) 

 

where 𝒯2D
ht denotes a 2-dimensional linear transform and Υ´ a hard-thresholding 

operator. 

The measured distances are composed into a set of coordinates 𝑆𝑥𝑅
ht , where only the 

nearest distances are taken into account by thresholding them with a threshold-value 

𝜏match
ht : 

 

 𝑆𝑥𝑅
ht = {𝑥 ∈ 𝑋 ∶ 𝑑(𝑍𝑥𝑅

, 𝑍𝑥) ≤ 𝜏match
ht }. (22) 

3.4.3. Collaborative filtering 

Now the nearest blocks for a reference block are known and can be stacked together 

to form a group of blocks for further processing. Linear transformation is applied to 

the group 𝑍𝑆𝑥𝑅
ht . This transformation reveals the shared features between blocks 

efficiently. In the transformed data the shared features have large coefficients while 

the noise is mostly presented with small coefficients. By thresholding these small 

coefficients to zero it is possible to reduce noise significantly and keep the unique 

details in place. The collaborative filtering can be presented as 

 

 Ŷ
𝑆𝑥𝑅

ht
ht = 𝒯3D

ht−1
(Υ(𝒯3D

ht(𝑍𝑆𝑥𝑅
ht ))), (23) 

 

where Ŷ
𝑆𝑥𝑅

ht
ht  is the resulting filtered group of blocks in spatial domain and Υ the hard-

thresholding operator. The 3D linear transform 𝒯3D
ht is usually implemented as separate 

2D and 1D linear transformations. If 𝜎 is high, the 2D linear transformed blocks from 

distance calculation can be used here to avoid redundant transformations. The filtering 

process is illustrated in Figure 8 and the 3D transform can be seen in Figure 9. 

Different types of linear transformations can be used for the filtering and the output 

quality may vary based on the selected transformation type combined with hard 

thresholding. Also each transform has their own computational complexities. In 

general, Haar wavelet transformation and Walsh-Hadamard transformation are the 

fastest options, because these transformations can be calculated with only a few 

addition operations. 
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Figure 8. Processing of one block with collaborative filtering. The reference block is 

shown with blue borders and the nearest matching blocks with red borders. 

The filtered blocks are repositioned and aggregated to the output image. 
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3.4.4. Aggregation 

After filtering the group of blocks, they need to be put back in place to the result image. 

Each group may however have different amount of noise to begin with and this should 

be compensated. Dabov et al. propose that instead of taking into account all the effects 

of differencing variances and biasing within individual pixels, it is enough to give more 

weight to blocks with less noise and less weight to those with much noise. This is done 

by calculating the amount of non-zero coefficients in a group 𝑁har
𝑥𝑅  after thresholding 

and creating the weight 𝑤𝑥𝑅
ht based on that as 

 

 

𝑤𝑥𝑅
ht = {

1

𝜎2𝑁har
𝑥𝑅

,

1,

   
if 𝑁har

𝑥𝑅 ≥ 1

otherwise
. (24) 

 

With the weight 𝑤𝑥𝑅
ht the group can be aggregated into the result image as a weighted 

average. Because the blocks inside a group may overlap, the result of summing the 

weighted averages needs to be normalized by dividing the result with the sum of the 

weights. The result image ŷbasic becomes then 

 

 

ŷbasic(𝑥) =
∑ ∑ 𝑤𝑥𝑅

htŶ𝑥𝑚

ht,𝑥𝑅(𝑥)
(𝑥)

𝑥𝑚∈𝑆𝑥𝑅
ht𝑥𝑅∈𝑋

∑ ∑ 𝑤𝑥𝑅

ht
𝑥𝑚∈𝑆𝑥𝑅

ht 𝜒𝑥𝑚𝑥𝑅∈𝑋 (𝑥)
,    ∀𝑥 ∈ 𝑋 (25) 

 

where 𝜒𝑥𝑚
 is an operator which is 1 in the area of a block and 0 outside, and 𝑋 is the 

area of the input image. 

3.4.5. Wiener filtering 

To further improve the quality of the BM3D algorithm, in step 2, Wiener filter is used 

in co-operation with the basic estimate from step 1. The SSD distance calculation is 

performed again but with the basic estimate Ŷbasic as the base image: 

 

Figure 9. 3D linear transformation as separate 2D and 1D transformations. 
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𝑆𝑥𝑅
wie = {𝑥 ∈ 𝑋 ∶  

‖Ŷ𝑥𝑅
basic − Ŷ𝑥

basic‖
2

2

(𝑁1
wie)

2 ≤ 𝜏match
wie }. (26) 

 

𝑆𝑥𝑅
wie denotes the set of nearest block coordinates for a reference block positioned at 

𝑥𝑅 in the basic image. The empirical Wiener filter shrinkage coefficients for 

collaborative filtering in the second step are defined as 

 

 

𝐖𝑆𝑥𝑅
wie =

|𝒯3D
wie (Ŷ

𝑆𝑥𝑅
wie

basic)|
2

|𝒯3D
wie (Ŷ

𝑆𝑥𝑅
wie

basic)|
2

+ 𝜎2

. (27) 

 

The stack of blocks 𝑍𝑆𝑥𝑅
wie, which are the corresponding blocks at coordinates 𝑆𝑥𝑅

wie in 

the noisy image 𝑍, is 3D linear transformed and filtered by using the Wiener shrinkage 

coefficients 𝐖𝑆𝑥𝑅
wie. Finally the filtered stack is inverse transformed back to spatial 

domain. This process is as follows: 

 

 Ŷ
𝑆𝑥𝑅

wie
wie = 𝒯3D

wie−1
(𝐖𝑆𝑥𝑅

wie𝒯3D
wie(𝑍𝑆𝑥𝑅

wie)), (28) 

 

where the output Ŷ
𝑆𝑥𝑅

wie
wie  is the final denoised image estimate from step 2. This image 

still needs to be aggregated and normalized as in step 1 (Equation 25) with weights 

 

 
𝑤𝑥𝑅

wie = 𝜎−2 ‖𝐖𝑆𝑥𝑅
wie‖

2

−2

, (29) 

 

where the weights are derived from the 𝑙2-norm of the filter coefficients. 

3.5. Summary 

The existing denoising methods were briefly described in the previous sections. The 

denoising methods are generally split into three major categories: 

 

 spatial-domain filters, 

 transform-domain filters and 

 machine learning algorithms. 

 

In general, the denoising methods are designed to filter out simulated AWGN. The 

current state-of-the-art for denoising is the BM3D algorithm, which provides superior 

PSNR results in simulated AWGN filtering comparisons most of the time. BM3D has 

evolved from the earlier available methods and combines the best of them by utilizing 

non-locality with block-matching, transform-domain benefits with collaborative 

filtering and optimal minimum MSE output with the final Wiener filter. 

When considering the computational complexities of the algorithms and their 

suitability for GPGPU computing, the algorithms that require less data to process one 

sample, produce a singular output item and have less complexity are in general more 
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suitable. The NL-means algorithm has been proven to be well suited to GPGPU 

computation. Several implementations of NL-means using GPGPU have emerged in 

the field of biomedical image processing, where the algorithm has been extended to 

support also multidimensional denoising of magnetic resonance images or video 

sequences [30, 31]. With a small search window the computational complexity is low 

and it is possible to implement the NL-means filter by using solely deterministic 

calculation. Other GPU implementations of wavelet-based [32], adaptive bilateral 

filtering [33] and Gaussian blur [12] image denoising algorithms exist also. 
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4. BM3D FILTER IMPLEMENTATION 
 

The main objective of this thesis was to design an implementation of the BM3D image 

denoising algorithm presented in Chapter 3 by using the parallel processing methods 

provided by the OpenCL framework presented in Chapter 2. In this chapter the 

implementation and its design challenges are discussed. In Section 4.1 the reference 

implementations are shown, and Section 4.2 describes the new solution in more detail. 

4.1. Reference implementations 

At the time of writing only one implementation of the BM3D algorithm with open 

source code exists online. This program, created by Lebrun [34], is done using standard 

C++ and is compilable on various operating systems with minor changes. The program 

executes only on host machine CPU, but can be compiled to use multi-threading with 

OpenMP library [35]. It has also some features, such as color channel processing, 

integral images and standard deviation estimation, which are missing from the 

presented implementations. 

Another implementation for reference use is the application created by the original 

author of BM3D algorithm [1]. However the source code of the application is not 

available in public and therefore design choices cannot be fully compared with the 

implementations presented in this paper. The performance can still be measured and 

will be compared in Chapter 5. 

4.2. OpenCL implementation 

The work was started by designing and building a prototype MATLAB model of the 

algorithm for validating the functioning of the upcoming OpenCL implementation 

version. This prototype model had no parallelism included and was very inefficient in 

terms of performance. However the benefit was to have better knowledge of the 

algorithm beforehand. 

The actual OpenCL implementation was done using ANSI C code in the host 

application and OpenCL version 1.1 in the kernel code. An OS independent host 

application using Qt framework was also created for testing the OpenCL program in 

different operating systems, e.g. in Android. 

The OpenCL kernel code consists of three kernels: calc_distances, 

bm3d_basic_filter and bm3d_wiener_filter. A data flow diagram of 

the kernels is shown in Figure 10. Both steps of the BM3D algorithm use the 

calc_distances kernel first and then the respective kernel. The 

calc_distances kernel does the block-matching step of the algorithm described 

in Section 3.4.2. It saves the positions of 𝑁1 nearest blocks for each reference block 

into a memory area in global memory in a cached manner. These positions are used in 

multiple kernels simultaneously. 

As the naming suggests, the bm3d_basic_filter kernel does the step of 

creating the basic estimate image described in Sections 3.4.3 and 3.4.4. Each kernel 

instance produces a singular portion of the output image. The size of this portion is 

fully configurable and has effect on the performance. The parallelization of the 

algorithm is discussed in more detail in the following Section 4.2.1. Lastly the 
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bm3d_wiener_filter kernel is responsible for applying the Wiener filtering step, 

described in Section 3.4.5, between the noisy original and the basic estimate images. 

The kernel functions essentially in the same way than the bm3d_basic_filter 

kernel, but requires slightly more register memory because two 3D similar block stacks 

are needed to be kept in memory instead of only one. 

 

 

Figure 10. Data flow in the OpenCL and CUDA kernel codes. 

 

For the use of collaborative filtering, the 3D linear transformation functions were 

implemented using the Loeffler’s DCT method [22] for fast computation. As 

illustrated in Figure 9, the 3D transform is easily separable into multiple transforms. 

Additionally, an option to use 1D Haar wavelet transform method was provided with 
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the implementation. Choosing different transform methods may have some effect on 

the denoising quality and performance when filtering an image. 

The kernels were coded to use mostly local variables residing primarily in the 

register memory area of the execution device. Therefore a single kernel instance 

requires much space from the register file on a streaming multiprocessor. This is 

because the register memory is the fastest memory to use on a GPU and local variables 

are also more convenient to maintain in the code. However using much register 

memory forces to have less parallel threads running simultaneously to avoid register 

spillage to slow global memory. Hence the occupancy of a GPU is kept rather low in 

the implementation. 

Using the shared memory efficiently turned out to be problematic in the 

implementation. The shared memory is usually relatively small in size; for example on 

NVIDIA GeForce GTX 650 GPU there are only 48 kilobytes available to be used in a 

work-group. Since one work-group consists of multiple work-items and the data to be 

processed is a large two-dimensional area, it was not feasible to fit in all the needed 

common readable data. The option in NVIDIA GPUs to use shared memory as a L1 

cache was a good compromise to gain some performance improvement. 

Similarly to the reference implementation by Lebrun, an option to multiply the 

filtered blocks with a Kaiser window was added to the implementation. As originally 

proposed by Dabov et al. [1], the window may reduce the border effects visible on the 

final images. The window coefficients are illustrated in the Figure 11 below. 

 

 

Figure 11. 8x8-point Kaiser window with parameter value 𝛽 = 2. 

4.2.1. Parallelization 

To gain performance benefits from using the GPUs for computing, the BM3D 

algorithm had to be designed to be run in parallel. The algorithm showed to be difficult 

to parallelize efficiently due to its nature. Algorithms can have several kinds of data 
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dependency patterns between input and output memories. Typically these patterns are 

defined as 

 

 one-to-one, 

 one-to-many, 

 many-to-one, 

 many-to-many, 

 

where the left-hand side refers to the memory blocks in the input data array and the 

right-hand side refers to the output array. Many-to-N patterns are also known as gather 

operations and N-to-many as scatter operations [5]. The BM3D algorithm is the type 

of many-to-many pattern, since for one reference block in the image, the neighboring 

pixels need to be read widely and the filtering result will be written based on the same 

neighboring area, the search window, around the reference block. The scatter patterns 

are the most unpreferred type, because they introduce writing race conditions to the 

algorithm that must be satisfied. 

Two methods for parallelizing the BM3D algorithm were tried when developing the 

implementation. First was to map reference blocks into work-items directly and 

process each block in kernel instances separately. The output was written in layered 

areas in the global memory. Once the work-group had all work-items processed, one 

work-item was assigned to merge the intermediate results in the layers into group 

results. Then after all groups had processed their items, the host application merged 

the group results into the final image. Since the algorithm requires writing the weight 

map separately, the memory requirements for the output writings are doubled. 

The memory requirements raised an issue with the first method in terms of 

scalability. The intermediate results required much of memory space to store and 

processing images with greater resolution turned out soon to be impossible. Also 

removing the layering by serializing the write operations was not an option when 

seeking a true parallel solution. 

 

 

Figure 12. Neighborhoods to be processed by a thread. 
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The second method is similar to the parallelization used in the reference 

implementation by Lebrun [34], and can be seen in Figure 12. In the method, the 

memory dependency pattern of many-to-many in the algorithm is redundantly reduced 

to be type of many-to-one, which eliminates the need of writing intermediate results 

thoroughly. This is achieved by dividing the workload equally between threads by 

assigning fixed-size portions of the output image for each thread to compute. Each 

portion can be calculated by a single thread by computing and adding also the results 

of the neighboring reference blocks which have an effect on the portion. The process 

is illustrated in Figure 13. As said, this introduces a lot of redundant calculation in 

kernel instances, since the same results are being computed multiple times 

concurrently. This method adds a lot of latency in computing a single work-item, but 

reduces the overall memory requirements and adds scalability in terms of resolution. 

It was noted that the size of a portion should be a multiple of 𝑁step, because then the 

results of the block-matching can be cached and reused more efficiently in all filter 

threads. 

The amount of redundancy depends solely on the size of a portion and the size of a 

search window, i.e. the ratio between them. In the implementation of Lebrun, the 

overhead is much smaller since the parallel processing is done using OpenMP and the 

amount of parallel threads is small, e.g. 4-8 threads processed on a CPU. Therefore the 

output image is divided into same amount of portions than there are threads, and 

redundant calculation appears only in the border areas of a portion. Then each thread 

is responsible for computing a wide area of payload, in contrast to small payload on 

massively parallel computation. 

 

 

Figure 13. One-dimensional illustration of dividing the work-items in equally sized 

portions. The results indicated with red lines are discarded as the 

neighboring threads are responsible for their computation. 

4.2.2. CUDA implementations 

The OpenCL kernel code was also ported for the CUDA platform to be able to run the 

filter on a NVIDIA SHIELD mobile device. Porting the code was straightforward and 



 

 

35 

did not introduce major challenges to have the filter running on a PC. To be able to 

run the CUDA code on the mobile device, a small Android host application was 

developed. Fortunately, NVIDIA provided a sample code for loading CUDA 

applications and shared libraries on SHIELD devices, and modifying it for BM3D 

usage was not a big task. 

4.2.3. Problems occurred 

Although the OpenCL framework drives forward the idea of consistency in code, this 

does not necessarily apply in practice. The BM3D implementation showed that using 

the private memory excessively in a complex kernel does not function properly on all 

platforms. For example, running the algorithm with a GPU from ATI generated false 

results, which can be seen in Figure 14. Also it was not possible to even compile the 

code on Qualcomm’s DragonBoard platform without further modifications, because 

the compiler crashed always on invocation. It was suspected that the excessive register 

usage did not spill to global memory properly in both cases. The code executed without 

problems on NVIDIA cards. This ultimately means that despite the code being in a 

valid format for OpenCL usage, it usually needs to be modified and optimized for each 

platform separately. 

 

 

 

Figure 14. Computational errors while processing an image with ATI Radeon HD 

5450 GPU: the basic BM3D estimate (left) and the final result (right). 
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5. RESULTS 
 

This chapter presents the results of the designed BM3D algorithm implementation 

from Chapter 4. Section 5.1 describes the used testing environment in all test cases in 

Sections 5.2-5.5. In Section 5.6 the overall performance based on the results is 

evaluated, and in Section 5.7 the results are compared to the reference implementation 

results. 

The result comparisons focus more on comparing the performances of the 

implementations while the statistical image quality (PSNR) is less considered. The 

overall performance results are visible in Figure 19 and Figure 20. 

The test cases consist of four test images with varying sizes. Images with different 

sizes were used because the image size is usually proportional with the execution time 

of a filter. The test cases included only grayscale images with no color information 

and all the photographs were captured digitally using mobile phone cameras. Three of 

the images had different levels of synthetic noise added into them and one image had 

significant amount of natural noise. The synthetic and natural noise differ in their 

characteristics and therefore the visual quality after filtering and the filter parameter 

requirements can also vary between these two. The synthetic noise is only AWGN 

added to an image, but the natural noise can consist of various noise types, such as 

 

 photon shot noise, 

 speckle noise and 

 thermal noise. 

 

The origins of these noise types were discussed in more detail in Chapter 1. 

Two different filter parameter profiles were used, and these profiles are described 

in detail in Table 2. Five different implementations were compared with each other 

having the same filter profile in use in each test case. These five implementations are 

referred as Lebrun [34], Original by Dabov et al. [1], OpenCL, CUDA and Mobile 

CUDA. The test execution times were averaged from five sequential test runs. 

 

Table 2. Filter parameter profiles used in test cases. 

Parameter Description Original profile Modified profile 

𝑁1 Block size 8 8 

𝑁2
ht 1. step similar block count 16 8 

𝑁2
wie 2. step similar block count 32 8 

𝑁step Reference block step size 3 7 

𝑁S Search window size 39 21 

𝑁S,step
ht  1. step search window step size 1 1 

𝑁S,step
wie  2. step search window step size 1 1 

𝜏match
ht  1. step similarity threshold 2500 2500 

𝜏match
wie  2. step similarity threshold 400 400 

𝜆2D 2D hard-threshold value 0 0 

𝜆1D 1D hard-threshold value 2.7 2.7 

𝛽 Kaiser window parameter 2.0 0 

𝒯2D 2D linear transform method 2D-DCT 2D-DCT 

𝒯1D 1D linear transform method 1D-Haar 1D-Haar1 

1The implementation by Lebrun uses 1D Walsh-Hadamard transform instead. 
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5.1. Test environment 

The test cases described in the following sections were run on a computer which had 

an Intel i5-4570 processor as a CPU, 8 gigabytes of RAM and NVIDIA GeForce GTX 

650 GPU. The processor has four physical processing cores and no support for Hyper-

Threading Technology, and the GPU has compute capability version 3.0 and 384 

CUDA cores. All tests were run on 64-bit Windows 7 OS. Additionally, NVIDIA 

SHIELD which is a mobile Android tablet device with the CUDA platform and a Tegra 

K1 192 CUDA core GPU was also used for further comparison in the tests. 

5.2. Test case 1: 256 × 256 image with simulated noise 

In the first test case a small 256 × 256 sized image is processed. The image is a close-

up shot of a cup with detailed texturing. Synthetic noise is added to the image with 

standard deviation of 25. The processed images can be seen in Figure 15 and the 

measurement results in Table 3 with the best result in bold type. 

 

 

Figure 15. Noisy image with 𝜎 = 25 (left, PSNR 20.39 dB) and the OpenCL BM3D 

denoised image using the original profile (right, PSNR 28.16 dB). 

 

The results show that when small images are processed, the GPGPU computation 

does not add any value in the presented implementations. In fact, the performance is 

significantly better when only a CPU is used. The overhead of using a GPGPU solution 

is not compensated in the case of small images. A CPU can compute the small image 

more efficiently because processing a single step in the BM3D algorithm is generally 

faster with a CPU core than with a GPU core, and when the amount of reference blocks 

is low the CPU can sequentially process all the blocks faster. 

The quality of the output images between the implementations does not vary 

notably, except the CUDA implementations suffered moderately from having small 

errors in the right and bottom border areas. The implementation by Lebrun uses Walsh-

Hadamard 1D linear transformation in the 3D filtering and the coefficient thresholding 

produces slightly different results. 
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Table 3. Test results of test case 1 (256 × 256, 𝜎 = 25). 

Profile Implementation 

1. step 

PSNR 

(dB) 

2. step 

PSNR 

(dB) 

1. step 

time 

(ms) 

2. step 

time 

(ms) 

Total 

time 

(ms) 
Speedup 

Original 

Lebrun (4x CPU) 27.58 28.28 616.6 670.8 1287.4 0.71x 

Original 27.86 28.31 537.1 375.6 912.7 1.00x 

OpenCL 27.72 28.16 666.5 2299.7 2966.2 0.31x 

CUDA 27.72 27.77 630.1 2245.6 2875.7 0.32x 

Mobile CUDA 27.72 27.77 1339.7 5330.7 6670.4 0.14x 

Modified 

Lebrun (4x CPU) 27.11 27.63 115.2 139.2 254.4 0.66x 

Original 26.99 27.48 124.5 42.4 166.9 1.00x 

OpenCL 27.19 27.66 216.4 330.4 546.8 0.31x 

CUDA 27.19 27.55 244.1 378.2 622.3 0.27x 

Mobile CUDA 27.19 27.55 339.1 507.6 846.7 0.20x 

5.3. Test case 2: FHD image with simulated noise 

The image in this test case presents several objects with different levels of focus. The 

image resolution is 1920 × 1080 pixels and the noise is generated with SD value of 35. 

The image and the results can be seen in Figure 16 and Table 4. 

 

 

Figure 16. A FullHD image filtered with the modified profile using the CUDA 

implementation: original image (top-left), noisy image with 𝜎 = 35 (top-

right, PSNR 18.10 dB), result after first step in BM3D filtering (bottom-

left, PSNR 29.99 dB) and final result of BM3D filtering (bottom-right, 

PSNR 30.04 dB). 

 

With FullHD images the GPGPU starts to add some value to the computational 

performance. With the modified profile the computation of the image is over four times 

faster using a GPU with OpenCL than a CPU, and the PSNR is even better with the 
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presented implementations. The implementation by Lebrun was not able to process 

FullHD images, and the reason for this is discussed in more detail in Section 5.6. It 

took too long for the mobile CUDA implementation to process the FullHD image with 

the original filter profile and an ANR halted the execution. 

 

Table 4. Test results of test case 2 (1920 × 1080, 𝜎 = 35). 

Profile Implementation 

1. step 

PSNR 

(dB) 

2. step 

PSNR 

(dB) 

1. step 

time 

(ms) 

2. step 

time 

(ms) 

Total 

time 

(ms) 
Speedup 

Original 

Original 29.83 29.97 22733.3 17422.7 40156.0 1.00x 

OpenCL 29.99 30.05 13461.0 47488.0 60949.0 0.66x 

CUDA 29.99 30.04 12324.0 42101.0 54425.0 0.74x 

Modified 

Original 28.95 29.28 3638.5 1789.2 5427.7 1.00x 

OpenCL 29.28 29.57 559.0 703.2 1262.2 4.30x 

CUDA 29.28 29.57 629.6 757.8 1387.4 3.91x 

Mobile CUDA 29.28 29.57 1867.0 1715.7 3582.7 1.51x 

5.4. Test case 3: UHD image with simulated noise 

The third image has a resolution of 3840 × 2160 pixels, which is four times larger than 

the FHD resolution. AWGN with large SD (𝜎 = 100) was simulated into the image. 

The image and the filtering results are shown in Figure 17 and Table 5. 

 

 

Figure 17. A 4K UHD image filtered with the OpenCL implementation: original 

image (top-left), noisy image with 𝜎 = 100 (top-right, PSNR 10.76 dB), 

result with modified profile after first step of BM3D filtering (bottom-left, 

PSNR 20.49 dB) and final result of BM3D filtering (bottom-right, PSNR 

19.61 dB). 

 

4K images are four times larger than the FullHD images. Therefore significant 

performance gains can be predicted when a more parallel solution is used. The results 
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confirm this prediction when the lower quality profile is used. Only the original 

implementation was able to process the test image with the original filter profile. The 

others timed out after computing for too long. The reason for this is that with the 

original profile a GPU thread’s private memory usage exceeds its limits. Surprisingly 

the visual quality is slightly better with the modified profile. 

 

Table 5. Test results of test case 3 (3840 × 2160, 𝜎 = 100). 

Profile Implementation 

1. step 

PSNR 

(dB) 

2. step 

PSNR 

(dB) 

1. step 

time 

(ms) 

2. step 

time 

(ms) 

Total 

time 

(ms) 
Speedup 

Original Original 19.62 19.25 47095.4 58842.3 105937.7 1.00x 

Modified 

Original 19.05 19.18 11400.0 6499.3 17899.3 1.00x 

OpenCL 20.49 19.61 1070.8 1312.2 2383.0 7.51x 

CUDA 20.49 19.61 1340.8 1488.0 2828.8 6.33x 

Mobile CUDA 20.49 19.61 6563.4 6076.6 12640.0 1.42x 

5.5. Test case 4: Real image with natural noise 

The influence of the BM3D filter is based on the standard deviation parameter; i.e. 

larger SD implies less noise and possibly more filtering artifacts. The fourth test case 

has an image with natural noise instead of simulated, and therefore the SD needs to be 

estimated. The image has a resolution of 960 × 1280, and the image was chosen for 

the test because of the excessive noise, which is visible in multiple forms. That is, not 

only AWGN equivalent noise is present. Filtering with SD value of 25 was selected 

manually and appeared to produce the best results in terms of subjective visual quality. 

The image and the results can be seen in Figure 18 and Table 6. 

 

 

Figure 18. A photograph with excessive noise taken in low-light conditions (left) and 

the BM3D filtered version using modified profile and 𝜎 = 25 (right). 



 

 

41 

 

With this image it is impossible to compare the statistical image quality, because the 

ground truth is not known due to the presence of natural noise. However it was 

subjectively estimated that the original profile did not produce significantly better 

visual quality image output. With both profiles the AWGN was efficiently reduced in 

the image, but other noise types, such as speckle noise, still persist in the image. As 

the image is smaller than, for example, the FullHD image, the performance gain of 

parallelization is also smaller. 

 

Table 6. Test results of test case 4 (960 × 1280, 𝜎 = 25). 

Profile Implementation 

1. step 

time 

(ms) 

2. step 

time 

(ms) 

Total 

time 

(ms) 
Speedup 

Original 

Original 9007.0 8826.7 17834.0 1.00x 

OpenCL 7617.4 27808.0 35425.4 0.50x 

CUDA 7007.0 24933.0 31940.0 0.56x 

Modified 

Lebrun (4x CPU) 1647.4 1906.2 3553.6 0.79x 

Original 1888.9 918.9 2807.8 1.00x 

OpenCL 366.1 542.8 908.9 3.09x 

CUDA 418.9 570.3 989.2 2.84x 

Mobile CUDA 852.1 989.4 1841.5 1.52x 

5.6. Overall performance 

The original filter profile turned out to be problematic for the GPU implementations. 

This was mostly caused by having more workload and private memory requirements 

per thread. The larger search window 𝑁𝑆 adds latency for each thread, and greater 𝑁2 

values cause more private memory to be used by a thread. The memory usage is spilled 

to slower global memory and then threads slow down due to memory latencies. Greater 

register usage also implies also that less threads can be run in parallel efficiently. 

 

 

Figure 19. The execution times using the original filter profile. 
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The results that are missing from the table denotes a failure in the execution of the 

application in question. The failures in the implementation by Lebrun occurred 

because it uses integral images [36] to speed up the patch distance evaluation, and this 

uses memory excessively. Therefore it was not possible to run most of the larger 

resolution image tests at all due to running out of memory. In GPU applications the 

failures took place because of timeouts invoked by the GPU drivers in the test 

platforms. In other words, one kernel in the application took too much time to compute 

the required result. This could have been avoided by dividing the single invocation of 

a filtering kernel into multiple kernel invocations, e.g. by using the offset parameter in 

the clEnqueueNDRangeKernel call within the OpenCL implementation. Later this was 

tested and the real execution time was measured to be in the same magnitude or slightly 

slower than the original implementation. 

 

 

Figure 20. The execution times using the modified filter profile. 

5.7. Comparison to reference implementations 

A comparison collage of filtering the first test image with all implementations is shown 

in Figure 21. The collage shows that the images filtered with the original and OpenCL 

implementations are nearly equal. The proposed implementations used unnormalized 

for accessing the image data. Both of the GPGPU frameworks did not support texture 

mirroring in the border areas of the images when the unnormalized access method was 

used. Therefore the edge areas in the proposed results had some distortion compared 

to the reference implementations. Complex edge handling logic was left out in the 

GPGPU kernel codes with the cost of slightly worse PSNR values. 
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Figure 21. Filter implementation quality comparison using the original filter profile. 
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6. DISCUSSION 
 

The first phenomenon to notice from the results is that in the case of small images, the 

CPU computation is faster in general because of the overhead of parallel computing 

and the benefits of a modern processor such as out-of-order processing. However with 

bigger resolutions the overhead is compensated and the parallel processing starts to 

add improvements to the performance with the modified profile. But with the original 

profile the workload tends to be too data-intensive for a single thread as it was 

discussed earlier in Section 5.6. 

In general, the visual quality was slightly degraded by the modifications in the filter 

profile. This was a compromise that had to be done to reduce the workload a single 

thread had to compute. Alternatively a different approach for parallelizing the 

algorithm as described in Section 4.2.1 could have been used, but it would have 

produced other practical problems such as serialization of memory accesses and 

memory requirement issues with intermediate result saving. But subjectively in some 

cases where the noise was relatively small the image quality was still nearly the same 

with the modified filter profile, e.g. in the fourth test case with natural noise. 

Additionally, there were several occasions where the basic estimate had equal or 

greater quality in terms of PSNR than the final Wiener filtered image. For practical 

applications the need for the Wiener filtering step can therefore be questioned, since it 

adds a lot of computation to the algorithm. While the Wiener filtering step produced 

smoother and better images in most of the synthetic noise test cases, there were 

occasions where some of the visual artifacts on solid surfaces were amplified by the 

Wiener filter as shown in Figure 22. In these cases the basic filter estimate was more 

pleasing for a human eye. As the original profile suggests, using a bigger 𝑁2 value in 

the second filter step reduces this effect. Since the 𝑁2 values were the same in both 

filtering steps in the modified filter profile, the second filtering step produced visually 

worse results at times. 

 

 

Figure 22. Close-up of the FHD image: basic estimate (left) and Wiener estimate 

(right). The Wiener filter adds blockiness on solid surfaces and makes the 

DCT basis artifacts more visible, but reduces small noise. 
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Especially in the 4K images in Figure 17 one can see a significant loss of contrast 

in the filtered image when compared to the original image. This happens because the 

added noise adds also energy to the image and a DC offset is added consequently. Both 

the objective and subjective visual quality could most likely be improved by altering 

the contrast or the dynamic range in the final image, for example by using histogram 

equalization or some corresponding method. 

It should be noted that color processing was not included in the implementations. 

Adding two more color channels increases the computational requirements at least by 

a factor of two. Therefore real-time image processing with high-quality BM3D 

denoising is still not feasible with the processing units currently in use, especially on 

mobile platforms. 

6.1. Future development 

Since the kernel code ended up having significant amount of instructions per thread, 

dynamic parallelism might have been one good option worth trying to profile and 

optimize the various subroutines in the code. However the hardware used in the tests 

did not support such recursive programming model, where kernel launches can be 

called inside other kernels. NVIDIA introduced dynamic parallelism in CUDA version 

5.0 for GPUs having compute capability version 3.5 or higher. The same concept was 

supported in OpenCL at version 2.0. 

Mostly 32-bit floating-point units were used in the 3D transformation code. By 

having support for 16-bit half-precision floating-point units on the hardware and 

frameworks, the memory requirements could have been halved and to have greater 

occupancy. The loss of precision would most likely have only a minor effect on the 

final image quality, since the dynamic range in pixel values is not very wide. Also 

using fixed-point number formats might have resulted in very different performance 

measurements. 

The presented implementations did not use the concept of unified memory. In 

unified memory the memory areas on the host and the devices are merged together into 

an area that is allocated and accessible on both systems. By using unified memory 

some parts of the code could have been simplified and possibly accelerated. 

The implementation by Lebrun uses integral images for measuring the patch 

distances. In the integral images the pixel differences for each search window offset 

are calculated beforehand into buffers, and then the patch difference can be calculated 

with only four addition operations [36]. But because the integral images stored into 

buffers require much memory and also the buffer values are cumulating and possibly 

overflowing, using integral images is only feasible for small images where it could 

improve the performance. 

The BM3D algorithm requires scattering of computed results and normalizing them 

with a weight map. By removing the scattering and writing only one result block in a 

thread would be much more suitable for GPGPU computing, because it would also 

eliminate the serialization of data write accesses. 
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7. CONCLUSION 
 

The aim of this thesis was to study the field of image denoising and then implement a 

state-of-the-art solution to use parallel processing in heterogeneous computing 

platforms. In the study the basic theories of some of the well-known denoising 

algorithms were described. BM3D algorithm implementations for both desktop and 

mobile usage were created by using OpenCL and CUDA programming interfaces. The 

presented implementations were evaluated with several test images having natural or 

synthetic noise. 

At the time of writing only two implementations of BM3D algorithm were publicly 

available, the original design by Dabov et al. [1] and an implementation created using 

C++ by Lebrun [34]. The source code for the original design was not available, and 

therefore the presented implementations could not be fully compared. The 

implementation by Lebrun uses OpenMP to parallelize the algorithm with CPU 

threads. The presented implementations use a similar parallelization strategy than the 

implementation by Lebrun but with GPGPU devices. However the parallelization of 

the BM3D algorithm efficiently using GPGPU turned out to be challenging, and 

multiple designs were considered. Main concerns were the serialization of data 

accesses and the memory usage as a whole. 

The results clearly showed that there is potential in using recent GPGPU 

technologies in image denoising algorithms. Albeit the fact that the presented 

implementations did not provide real improvements in performance when high quality 

filtering parameters were used, there were notable speed-ups when using lower quality 

parameters. The study showed that it is possible to outperform a desktop CPU with a 

mobile GPU in performance of BM3D algorithm computation. For example, the 

filtering of FullHD images was 1.5 times faster on a mobile GPU when a lower quality 

filter profile was used. Also filtering 4K images in lower quality with a desktop GPU 

using OpenCL was 7.5 times faster than filtering with a desktop CPU. 

Despite the manufacturer efforts on development GPGPU tools they still lack some 

key features and stability. For instance, several fatal crashes occurred while debugging 

or even analyzing the OpenCL kernel code with the CodeXL development tools. To 

the author’s knowledge a traditional profiling tool, where each function call inside the 

kernel code is counted and the time spent is measured, was not available on any of the 

development platforms used. Such tool would make it significantly easier to detect the 

bottlenecks in algorithms and to optimize the code. 

The current state-of-the-art denoising algorithm BM3D has hold its place well to 

this day in terms of image quality. But new algorithms are still being researched and 

developed and some implementations have already been shown to surpass BM3D in 

PSNR measurements in some cases [25, 37]. It is also likely that some of these new 

algorithms may be more suitable for GPGPU computing in terms of memory usage 

and parallelization. 
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